3,143
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Responses of Polylepis birds to patch and landscape attributes in the High Andes

ORCID Icon & ORCID Icon
Pages 5-22 | Received 21 May 2020, Accepted 14 Dec 2020, Published online: 11 Jan 2021

References

  • Fahrig L. Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manage. 1997;61:603–610.
  • Fahrig L. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl. 2002;12(2):346–353.
  • Lindenmayer DB, Franklin JF. Conserving forest biodiversity: a comprehensive multiscaled approach. Island press; Washington, DC. USA. 2002.
  • Haddad NM, Brudvig LA, Clobert J, et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv. 2015;1(2):e1500052.
  • Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst. 2003;34(1):487–515.
  • Wiegand T, Revilla E, Moloney KA. Effects of habitat loss and fragmentation on population dynamics. Conserv Biol. 2005;19(1):108–121.
  • Liu J, Wilson M, Hu G, et al. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landscape Ecol. 2018;33(3):341–352.
  • Fahrig L, Triantis K. Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeograph. 2013;40(9):1649–1663.
  • Fahrig L. Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst. 2017;48:1–23.
  • McGarigal K, Cushman SA. Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl. 2002;12(2):335–345.
  • Andrén H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos. 1994;71:355–366.
  • Rodewald AD, Yahner RH. Influence of landscape composition on avian community structure and associated mechanisms. Ecology. 2001;82(12):3493–3504.
  • Yaacobi G, Ziv Y, Rosenzweig ML. Habitat fragmentation may not matter to species diversity. Proc R Soc London B: Biol Sci. 2007;274(1624):2409–2412.
  • Bissonette JA, Storch I. Landscape ecology and resource management: linking theory with practice. Island Press; Washington, DC. USA. 2002.
  • Collinge SK. Ecology of fragmented landscapes. JHU Press; Baltimore. USA. 2009.
  • Kareiva P. Habitat fragmentation and the stability of predator–prey interactions. Nature. 1987;326(6111):388.
  • Lomolino MV. Body size evolution in insular vertebrates: generality of the island rule. J Biogeograph. 2005;32(10):1683–1699.
  • Ferraz G, Nichols JD, Hines JE, et al. A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. Science. 2007;315(5809):238–241.
  • Duckworth RA, Kruuk LE. Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution. 2009;63(4):968–977.
  • Cote J, Clobert J, Brodin T, et al. Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philos Trans R Soc B. 2010;365(1560):4065–4076.
  • Radford JQ, Bennett AF, Cheers GJ. Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol Conserv. 2005;124(3):317–337.
  • Fletcher JR, Didham J, Banks-Leite RK, et al. Is habitat fragmentation good for biodiversity? Biol Conserv. 2018;226:9–15.
  • Sih A, Jonsson BG, Luikart G. Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol Evol. 2000;15(4):132–134.
  • Gaggiotti OE, Hanski I. Mechanisms of population extinction. In: Hanski I, Gaggiotti OE, editors. Ecology, genetics and evolution of metapopulations. Finland; Academic Press; 2004. p. 337–366.
  • Huffaker C. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia. 1958;27(14):343–383.
  • Hastings A. Spatial heterogeneity and the stability of predator-prey systems. Theor Popul Biol. 1977;12(1):37–48.
  • Grez A, Zaviezo T, Tischendorf L, et al. A transient, positive effect of habitat fragmentation on insect population densities. Oecologia. 2004;141(3):444–451.
  • Ethier K, Fahrig L. Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecol. 2011;26(6):865–876.
  • Holzschuh A, Steffan-Dewenter I, Tscharntke T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol. 2010;79(2):491–500.
  • Saura S, Bodin Ö, Fortin MJ. EDITOR’S CHOICE: stepping stones are crucial for species’ long‐distance dispersal and range expansion through habitat networks. J Appl Ecol. 2014;51(1):171–182.
  • Quinn JF, Harrison SP. Effects of habitat fragmentation and isolation on species richness: evidence from biogeographic patterns. Oecologia. 1988;75(1):132–140.
  • Tscharntke T, Steffan-Dewenter I, Kruess A, et al. Characteristics of insect populations on habitat fragments: a mini review. Ecol Res. 2002;17(2):229–239.
  • Klingbeil BT, Willig MR. Guild‐specific responses of bats to landscape composition and configuration in fragmented Amazonian rainforest. J Appl Ecol. 2009;46(1):203–213.
  • Henden JA, Ims RA, Yoccoz NG, et al. Declining willow ptarmigan populations: the role of habitat structure and community dynamics. Basic Appl Ecol. 2011;12(5):413–422.
  • Proctor J, Woodell SR. The ecology of serpentine soils. Adv Ecol Res. Academic Press 1975;9:255–366.
  • Nyström M, Folke C. Spatial resilience of coral reefs. Ecosystems. 2001;4(5):406–417.
  • Fine PV, García-Villacorta R, Pitman NC, et al. A floristic study of the white-sand forests of Peru. Ann Missouri Bot Garden. 2010;97(3):283–305.
  • Pennington RT, Lehmann CE, Rowland LM. Tropical savannas and dry forests. Curr Biol. 2018;28(9):R541–R545.
  • Simpson BB. A revision of the genus Polylepis (Rosaceae: sanguisorbeae). Smithsonian Contribut Bot. 1979;43:1–62.
  • Gareca EE, Hermy M, Fjeldså J, et al. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conservat. 2010;19(12):3327–3346.
  • Fjeldså J. Biogeographic patterns and evolution of the avifauna of relict high-attitude woodlands of the Andes. Steenstrupia. 1992;18(2):9–62.
  • Fjeldså J. Polylepis forests - Vestiges of a vanishing ecosystem in the Andes. Ecotropica. 2002;8:111–123.
  • Kessler M. Bosques de Polylepis. En: Botánica económica de los Andes centrales. Morales M, Ollgaard B, Kvist LP, Borchsenius F & Balslev H. Universidad Mayor de San Andrés, La Paz,  2006. p. 11.
  • Lloyd H. Abundance and patterns of rarity of Polylepis birds in the Cordillera Vilcanota, southern Perú: implications for habitat management strategies. Bird Conserv Int. 2008;18(2):164–180.
  • Lloyd H. Influence of within‐patch habitat quality on high‐Andean Polylepis bird abundance. Ibis. 2008;150(4):735–745.
  • Lloyd H. Foraging ecology of high Andean insectivorous birds in remnant Polylepis forest patches. Wilson J Ornithol. 2008;120(3):531–544.
  • Sevillano-Ríos CS, Rodewald A, Morales L. Ecología y conservación de las aves asociadas con Polylepis: qué sabemos de esta comunidad cada vez más vulnerable. Ecología Austral. 2018;28:216–228.
  • Kessler M. The “Polylepis problem”: where do we stand. Ecotropica. 2002;8(2):97–110.
  • Gosling WD, Hanselman JA, Knox C, et al. Long‐term drivers of change in Polylepis woodland distribution in the central Andes. J Veg Sci. 2009;20(6):1041–1052.
  • IUCN 2018. The IUCN Red List of Threatened Species. Version 2018–2. http://www.iucnredlist.org Accesed on Nov 15th 2018.
  • van der Hammen T. The Pleistocene changes of vegetation and climate in tropical South America. J Biogeograph. 1974;1:3–26.
  • Pirie MD, Chatrou LW, Mols JB, et al. ‘Andean‐centred’genera in the short-branch clade of Annonaceae: testing biogeographical hypotheses using phylogeny reconstruction and molecular dating. J Biogeograph. 2006;33(1):31–46.
  • Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Nat Acad Sci. 2006;103(27):10334–10339.
  • Schmidt‐Lebuhn AN, Fuchs J, Hertel D, et al. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biol. 2010;12(6):917–926.
  • Hanselman JA, Bush MB, Gosling WD, et al. A 370,000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru). Palaeogeograph Palaeoclimatol Palaeoecol. 2011;305(1–4):201–214.
  • Valencia BG, Bush MB, Coe AL, et al. Polylepis woodland dynamics during the last 20,000 years. J Biogeograph. 2018;45:1019–1030.
  • Chepstow-Lusty A, Bush MB, Frogley MR, et al. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quat Res. 2005;63(1):90–98.
  • Weng C, Bush MB, Curtis JH, et al. Deglaciation and Holocene climate change in the western Peruvian Andes. Quat Res. 2006;66(1):87–96.
  • Williams JJ, Gosling WD, Brooks SJ, et al. Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000 years. Palaeogeograph Palaeoclimatol Palaeoecol. 2011;312(1–2):115–126.
  • Rodríguez F, Behling H. Late Quaternary vegetation, climate and fire dynamics, and evidence of early to mid-Holocene Polylepis forests in the Jimbura region of the southernmost Ecuadorian Andes. Palaeogeograph Palaeoclimatol Palaeoecol. 2012;350:247–257.
  • Renison D, Cingolani AM, Suarez R. Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Rev Chil Hist Nat. 2002;75:719–727.
  • Purcell J, Brelsford A. Reassessing the causes of decline of Polylepis, a tropical subalpine forest. Ecotropica. 2004;10:155–158.
  • Cingolani AM, Vaieretti MV, Giorgis MA, et al. Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert? Rangeland J. 2013;35:285–297.
  • Fjeldså J, Krabbe N. Birds of the High Andes. University of Copenhagen: Zoological Museum; 1990.
  • Sylvester SP, Sylvester MD, Kessler M. Inaccessible ledges as refuges for the natural vegetation of the high Andes. J Veg Sci. 2014;25(5):1225–1234.
  • Sylvester SP, Heitkamp F, Sylvester MD, et al. Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Sci Rep. 2017;7(1):333467.
  • Valente JJ, Betts MG, Albright T. Response to fragmentation by avian communities is mediated by species traits. Diversity Distrib. 2019;25(1):48–60.
  • Sevillano- Ríos CS. Diversity, ecology, and conservation of bird communities of Polylepis Woodlands in The Northern Andes of Peru. Master Thesis. New York: Cornell University. 2016.
  • Sevillano- Ríos CS. Breve Historia de la Ornitología en los Altos Andes del Norte del Perú y Su Importancia para la Conservación. Revista de Glaciares y Ecosistemas de Montaña. 2017;2:87–102.
  • Fjeldså J, Kessler M, Engblom G, et al. Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia: a contribution to sustainable natural resource management in the Andes. Copenhagen: Nordeco; 1996. p. 250.
  • Sevillano- Ríos CS, Lloyd H, Valdés-Velásquez A. Bird species richness, diversity and abundance in Polylepis woodlands, Huascaran biosphere reserve, Peru. Stud Neotropical Fauna Environ. 2011;46(1):69–76.
  • Sevillano-Ríos CS, Rodewald AD. Avian community structure and habitat use of Polylepis forests along an elevation gradient. PeerJ. 2017;5:e3220.
  • Zutta BR, Rundel PW, Saatchi S, et al. Prediciendo la distribución de Polylepis: bosques Andinos vulnerables y cada vez más importantes Predicting Polylepis distribution: vulnerable and increasingly important Andean woodlands. Rev. peru biol. 2012;19(August):1–8.
  • Google Earth Pro, DigitalGlobe, 2017
  • Boza Espinoza TE, Quispe-Melgar HR, Kessler M. Taxonomic reevaluation of the Polylepis sericea complex (Rosaceae), with the description of a new species. Systemat Bot. 2019;44(2):324–334.
  • Development Team QGIS (2018). QGIS geographic information system. Open source geospatial foundation project. http://qgis.osgeo.org Downloaded on Nov 2018.
  • Lloyd H, Marsden SJ. Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodivers Conservat. 2008;17(11):2645–2660.
  • Lloyd H, Marsden SJ. Between‐patch bird movements within a high‐Andean Polylepis woodland/matrix landscape: implications for habitat restoration. Restorat Ecol. 2011;19(1):74–82.
  • Kendall WL, Nichols JD, Hines JE. Estimating temporary emigration using capture–recapture data with Pollock’s robust design. Ecology. 1997;78(2):563–578.
  • Kendall WL, Bjorkland R. Using open robust design models to estimate temporary emigration from capture recapture data. Biometrics. 2001;57(4):1113–1122.
  • MacKenzie DI, Royle JA. Designing occupancy studies: general advice and allocating survey effort. J Appl Ecol. 2005;42(6):1105–1114.
  • NASA M. ASTER Global digital elevation model (Version 2. Trade, and Industry (METI: National Aeronautics and Space Administration (NASA) and Ministry of Economy; 2011.
  • Cahill JRA, Matthysen E, Huanca NE. Nesting biology of the giant conebill (Oreomanes fraseri) in the High Andes of Bolivia. Wilson J Ornithol. 2008;120(3):545–549.
  • Dorazio RM, Royle JA. Estimating size and composition of biological communities by modeling the occurrence of species. J Am Stat Assoc. 2005;100(470):389–398.
  • Zipkin EF, DeWan A, Andrew Royle J. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. J Appl Ecol. 2009;46(4):815–822.
  • Kéry M, Royle JA. Applied hierarchical modeling in ecology. Volumen 1. Academic Press. Waltham, MA 02451, USA; 2016.
  • Iknayan KJ, Tingley MW, Furnas BJ, et al. Detecting diversity: emerging methods to estimate species diversity. Trends Ecol Evol. 2014;29(2):97–106.
  • Wright AD, Grant EHC, Zipkin EF. A hierarchical analysis of habitat area, connectivity, and quality on amphibian diversity across spatial scales. Landscape Ecol. 2020;35(2):529–544.
  • Tingley MW, Beissinger SR. Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology. 2013;94(3):598–609.
  • Dorazio RM, Royle JA, Söderström B, et al. Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology. 2006;87(4):842–854.
  • Kéry M, Royle JA. Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. J Appl Ecol. 2008;45(2):589–598.
  • MacKenzie DI, Nichols JD, Hines JE, et al. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology. 2003;84(8):2200–2207.
  • Broms KM, Hooten MB, Fitzpatrick RM. Model selection and assessment for multi‐species occupancy models. Ecology. 2016;97(7):1759–1770.
  • McCain CM, Grytnes JA (2001). Elevational gradients in species richness. e LS.
  • McCain CM. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecol Biogeogr. 2007;16(1):1–13.
  • Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proc 3rd Int Workshop Distribut Stat Comput. 2003;124(No. 125):p. 10.
  • R Development Core Team, R. F. F. S. C.R. 2019. A language and environment for statistical computing.
  • Kellner K. jagsUI: a wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. R Package Version. 2016;1:4.4.
  • Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434–455.
  • Gelman A, Carlin JB, Stern HS, et al. Bayesian data analysis 2nd edn Chapman & Hall. Boca Raton FL: CRC; 2004.
  • Spiegelhalter DJ, Best NG, Carlin BP, et al. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol. 2002;64(4):583–639.
  • Fahrig L, Storch D. Why do several small patches hold more species than few large patches? Global Ecol Biogeogr. 2020;29(4):615–628.
  • Chao A, Chiu CH. Species richness: estimation and comparison. In Wiley StatsRef: Statistics Reference Online (eds Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F and Teugels JL). 2014;1–26.
  • Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Meth Ecol Evolut. 2016;7(12):1451–1456.
  • Hsieh TC, Ma KH, Chao A. (2018) iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.18 http://chao.stat.nthu.edu.tw/blog/software-download/. Downloaded on Nov 15 th 2018.
  • Saunders DA, Hobbs RJ, Margules CR. Biological consequences of ecosystem fragmentation: a review. Conserv Biol. 1991;5(1):18–32.
  • Devictor V, Julliard R, Jiguet F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos. 2008;117(4):507–514.
  • Turner IM. Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol. 1996;33:200–209.
  • Tinoco BA, Astudillo PX, Latta SC, et al. Influence of patch factors and connectivity on the avifauna of fragmented Polylepis forest in the Ecuadorian Andes. Biotropica. 2013;45(5):602–611.
  • MacArthur RH, Wilson EO. The theory of island biogeography. Princeton: NJ. Princeton University press; 1967.
  • Rodewald AD. The importance of land uses within the landscape matrix. Wildlife Soc Bull. 2003;31:586–592.
  • Mortelliti A, Amori G, Boitani L. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia. 2010;163(2):535–547.
  • Ricketts TH. The matrix matters: effective isolation in fragmented landscapes. Am Nat. 2001;158(1):87–99.
  • Prugh LR, Hodges KE, Sinclair AR, et al. Effect of habitat area and isolation on fragmented animal populations. Proc Nat Acad Sci. 2008;105(52):20770–20775.
  • Astudillo PX, Schabo DG, Siddons DC, et al. Patch-matrix movements of birds in the páramo landscape of the southern Andes of Ecuador. Emu-Austral Ornithol. 2019;119(1):53–60.
  • Wintle BA, Kujala H, Whitehead A, et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc Nat Acad Sci. 2019;116(3):909–914.
  • Lindenmayer D. Small patches make critical contributions to biodiversity conservation. Proc Nat Acad Sci. 2019;116(3):717–719.
  • Trzcinski MK, Fahrig L, Merriam G. Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecol Appl. 1999;9(2):586–593.
  • De Camargo RX, Boucher-Lalonde V, Currie DJ. At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Diversity Distrib. 2018;24(5):629–639.
  • Shoffner A, Wilson AM, Tang W, et al. The relative effects of forest amount, forest configuration, and urban matrix quality on forest breeding birds. Sci Rep. 2018;8(1):17140.
  • Hanski I, Triantis K. Habitat fragmentation and species richness. J Biogeograph. 2015;42(5):989–993.
  • Pfeifer M, Lefebvre V, Peres CA, et al. Creation of forest edges has a global impact on forest vertebrates. Nature. 2017;551(7679):187.
  • Fahrig L, Arroyo-Rodríguez V, Bennett JR, et al. Is habitat fragmentation bad for biodiversity? Biol Conserv. 2019;230:179–186.
  • Thompson FR, Donovan TM, DeGraff RM, et al. A multi-scale perspective of the effects of forest fragmentation on birds in eastern forests. In: george, T. Luke; Dobkin, David S., eds. Effects of habitat fragmentation on birds in Western Landscapes: contrasts with paradigms from the Eastern United States. Stud Avian Biol. 2002;25:8–19.
  • Villard MA, Trzcinski MK, Merriam G. Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol. 1999;13(4):774–783.
  • Debinski DM, Holt RD. A survey and overview of habitat fragmentation experiments. Conserv Biol. 2000;14(2):342–355.
  • Fjeldså J. The avifauna of the Polylepis woodlands of the Andean highlands: the efficiency of basing conservation priorities on patterns of endemism. Bird Conserv Int. 1993;3(1):37–55.