1,999
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influencia del micrositio y el ambiente en la instalación de Polylepis tarapacana en los Altos Andes

ORCID Icon, ORCID Icon &
Pages 135-145 | Received 19 Jun 2020, Accepted 02 Mar 2021, Published online: 13 Apr 2021

References

  • Christie DA, Armesto J. Regeneration microsites and tree species coexistence in temperate rain forest of Chiloé Island, Chile. J Ecol. 2003;91(5):776–784.
  • Toro Manríquez M, Promis A, Huertas Herrera A, et al. Influencia del micrositio y la exposición en la regeneración de bosques de Nothofagus pumilio afectados por Castor canadensis en Tierra del Fuego: un análisis exploratorio [Influence of the microsite and exposure on the regeneration of Nothofagus pumilio forests affected by Castor canadensis in Tierra del Fuego: an exploratory analysis]. Bosque. 2018;39(3):431–440. Spanish.
  • Dalling JW, Hubbell SP. Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. J Ecol. 2002;90(3):557–569.
  • Titus J, Nowak R, Smith S. Soil resource heterogeneity in the Mojave Desert. J Arid Environ. 2002;52(3):269–292.
  • Dobrowski SZ, Swanson AK, Abatzoglou JT, et al. Forest structure and species traits mediate projected recruitment declines in western US tree species. Glob Ecol Biogeogr. 2015;24(8):917–927. .
  • Körner C. Alpine treelines: functional ecology of the global high elevation tree limits. Basel: Springer; 2012.
  • Cabrera AL. Ecología vegetal de la Puna [Plant ecology of the Puna]. Colloq Geogr. 1968;9: 91–116. Spanish.
  • Brack Egg A, Mendiola C. Ecologı́a del Perú [Ecology of Peru]. Lima: Quebecor world Peru; 2004. ( Spanish).
  • Monteiro JAF, Hiltbrunner E, Körner C. Functional morphology and microclimate of Festuca orthophylla, the dominant tall tussock grass in the Andean Altiplano. Flora. 2011;206(4):387–396.
  • Asefa M, Cao M, Zhang G, et al. Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages. Sci Rep. 2017;7(1):132. .
  • Jumpponen A, Vare H, Mattson KG, et al. Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain. J EcolN. 1999;87(1):98–105. .
  • Bader MY, Van Geloof I, Rietkerk R. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. 2007;191(1):33–45.
  • Cierjacks A, Iglesias JE, Wesche K, et al. Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper tree lines in central Ecuador. J Trop Ecol. 2007;23(3):309–318. .
  • Rehm EMK, Feeley J. Forest patches and the upward migration of timberline in the southern Peruvian Andes. For Ecol Manage. 2013;305:204–211.
  • Acuña-Rodriguez IS, Cavieres LA, Gianoli E. Nurse effect in seedling establishment: facilitation and tolerance to damage in the Andes of central Chile. Rev Chil Hist Natural. 2006;79:329–336.
  • Parker KC. Site-related demographic patterns of organ-pipe cactus populatlons in southern Arizona. Bull Torrey Bot Club. 1987;114(2):149–155.
  • Perez FL. Particle sorting due to off-road vehicle traffic in a high Andean paramo. Catena. 1991;18(3–4):239–254.
  • Kleier C, Rundel PW. Microsite requirements, population structure and growth of the cushion plant Azorella compacta in the tropical Chilean Andes. Aust Ecol. 2004;29(4):461–470.
  • Kleier C, Lambrinos JG. The importance of nurse associations for three tropical alpine life forms. Arctic, Antarctic, and Alpine Research. 2005;37(3):331–336.
  • Callaway RM, Brooker RW, Choler P, et al. Positive interactions among alpine plants increase with stress. Nature. 2002;417(6891):844–848. .
  • Valiente-Banuet A, Vite F, Zavala-Hurtado JA. Interaction between the cactus Neobuxbaumia tetetzo and the nurse shrub Mimosa luisana. J Veg Sci. 1991;2(1):11–14.
  • Tewksbury JJ, Lloyd JD. Positive interactions under nurse plants: spatial scale, stress gradients and benefactor size. Oecologia. 2001;127(3):425–434.
  • Catorci A, Cesaretti S, Velasquez JL, et al. Plant–plant spatial interactions in the dry Puna (southern Peruvian Andes). Alp Bot. 2011;121(2):113–121. .
  • Johnson D, McCulloh K, Reinhardt K. The earliest stages of tree growth: development, physiology and impacts on microclimate. In: Meinzer FC, Lachenbruch B, Dawson TE, editors. Size- and Age-Related Changes in Tree Structure and Function. New York (NY): Springer; 2011. p. 65–87.
  • Yirdaw E, Starr M, Negash M, et al. Influence of topographic aspect on floristic diversity, structure and treeline of afromontane cloud forests in the Bale Mountains, Ethiopia. J For Res. 2015;26(4):919–931. .
  • Kraft NJB, Adler PB, Godoy O, et al. Community assembly, coexistence, and the environmental filtering metaphor. Funct Ecol. 2015;29(5):592–599. .
  • Gallardo-Cruz JA, Pérez-García EA, Meave JA. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landsc Ecol. 2009;24(4):473–482.
  • Werner FA, Homeier J. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct Ecol. 2015;29(3):430–440.
  • Nambiar EKS, Sands R. Competition for water and nutrients in forests. Can J For Res. 1999;23(10):1955–1968.
  • Balandier P, Collet C, Miller JH, et al. Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry. 2006;79(1):3–27. .
  • Gajardo R. La Vegetación Natural de Chile: clasificación y Distribución Geografica [The Natural Vegetation of Chile: geographical Classification and Distribution]. Santiago: Editorial Universitaria; 1994. ( Spanish).
  • Morales MS, Villalba R, Grau HR, et al. Rainfall controlled tree growth in high elevation subtropical treelines. Ecology. 2004;85(11):3080–3089. .
  • Kessler M, Herzog SK. Conservation status in Bolivia of timberline habitats, elfin forest and their birds. Cotinga. 1998;10:50–54.
  • Jácome J, Kessler M, Smith AR. A human-induced downward-skewed elevational abundance distribution of pteridophytes in the Bolivian Andes. Glob Ecol Biogeogr. 2007;16(3):313–318.
  • Simpson BB. A revision of the Genus Polylepis (Rosaceae: sanguisorbeae). Smithson Contrib Bot. 1979;43(43):1–62.
  • Kessler M, Schmidt-Lebuhn AN. Taxonomical and distributional notes on Polylepis (Rosaceae). Org Diver Evol. 2006;5:1–10.
  • Renison D, Cuyckens GAE, Pacheco S, et al. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina [Distribution and conservation status of populations of trees and shrubs of the genus Polylepis (Rosaceae) in the mountains of Argentina]. Ecol Austral. 2013;23(1):27–36. Spanish.
  • Zutta BR, Phillip WR, Saatchi S, et al. Prediciendo la distribución de Polylepis: bosques Andinos vulnerables y cada vez más importantes [Predicting the distribution of Polylepis: vulnerable and increasingly important Andean forests]. Rev Peru Biol. 2012;19(2):205–212. Spanish. .
  • Kessler M. The genus Polylepis (Rosaceae) in Bolivia. Candollea. 1995;50:131–171.
  • Kessler M. Bosques de Polylepis [Polylepis forests]. In: Moraes M, Øllgaard B, Kvist LP, et al. editors. Botánica Económica de los Andes Centrales [Economic Botany of the Central Andes]. La Paz: Universidad Mayor de San Andrés, 2006:110–120. Spanish.
  • Morales MS, Christie D, Neukom R, et al. Variabilidad hidroclimática en el sur del altiplano: pasado, presente y futuro [Hydroclimatic variability in the southern highlands: past, present and future]. Tucumán, Argentina: Serie Conservación de la Naturaleza, Fundación Miguel Lillo; 2018. (Grau HR, Babot J, Izquierdo A, et al. editors. La Puna Argentina: naturaleza y cultura; vol. 24). Spanish.
  • Christie DA, Lara A, Barichivich J, et al. El Niño-Southern Oscillation signal in the world’s highest-elevation tree-ring chronologies from the Altiplano, Central Andes. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;281(3–4):309–319. .
  • Solíz C, Villalba R, Argollo J, et al. Spatio-temporal variations in Polylepis tarapacana radial growth across the Bolivian Altiplano during the 20th century. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;281(3–4):296–308. .
  • Kuuluvainen T, Kalmari R. Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal oldgrowth forest in southern Finland. Ann Bot Fenn. 2003;40:401–413.
  • Bailey T, Davidson N, Close D. Understanding the re-generation niche: microsite attributes and recruitment of eucalypts in dry forests. For Ecol Manage. 2012;269:229–238.
  • Tecco PA, Pais-Bosch AI, Funes G, et al. Mountain invasions on the way: are there climatic constraints for the expansion of alien woody species along an elevation gradient in Argentina? J Plant Ecol. 2016;9(4):380–392. .
  • Cabrera ÁL. Fitogeografía de la república argentina [Phytogeography of the Argentine Republic]. Bol Soc Argent Bot. 1971;14: 1–42. Spanish.
  • Aceituno P. Elementos del clima en el altiplano sudamericano [Elements of the climate in the South American highlands]. Rev Geofis. 1993;44: 37–55. Spanish.
  • Cuyckens GAE, Christie DA, Domic AI, et al. Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Glob Planet Chang. 2016;137:79–87.
  • Renison D, Hensen I, Suárez R, et al. Soil conservation in Polylepis mountain forests of Central Argentina: is livestock reducing our Natural capital? Austral Ecol. 2010;35(4):435–443. .
  • Mendoza EA, González JA. Las ecorregiones del noroeste argentino basadas en la clasificación climática de köppen [The ecoregions of the Argentine Northwest based on the Köppen climate classification]. Ser Conserv Nat. 2011;19: 3–41. Spanish.
  • Morales MS, Christie DA, Villalba R, et al. Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings. Clim Past. 2012;8(2):653–666. .
  • Wawrzyk AC, Vilá BL. Dinámica de pastoreo en dos comunidades de la puna de Jujuy, Argentina. Lagunillas del Farallón y Suripujio [Grazing dynamics in two communities of the Jujuy puna, Argentina. Lagunillas del Farallón and Suripujio]. Rev Antropol Chil. 2013;45(2): 349–362. Spanish.
  • Prodan M, Peters R, Cox F, et al. Mensura forestal [Forest mensuration]. San José, Costa Rica: IICA; 1997. Spanish.
  • Assmann E. The principles of forest yield study: studies in the organic production, structure, increment, and yield of forest stands. Oxford: Pergamon; 1970.
  • Hoch G, Körner C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol. 2005;19(6):941–951.
  • Martínez Pastur G, Jordán C, Lencinas MV, et al. Landscape and microenvironmental conditions influence over regeneration dynamics in old-growth Nothofagus betuloides Southern Patagonian forests. Plant Biosyst. 2012;146(1):201–213. .
  • Braun G. The use of digital methods in assessing forest patterns in an Andean environment: the Polylepis example. Mt Res Dev. 1997;17(3):253–262.
  • Saavedra J. Caracterización de la estructura poblacional de Polylepis tarapacana en sector cerro Chiguana, cuenca del salar de Surire, para establecer los lineamientos de un programa de restauración ecológica [Characterization of the population structure of Polylepis tarapacana in the Cerro Chiguana sector, Salar de Surire basin, to establish the guidelines for an ecological restoration program] [master’s thesis]. Arica: Universidad de Tarapacá; 2013. ( Spanish).
  • Choque A Evaluación del estado de conservación y propuesta de manejo silvicultural en formaciones naturales de queñoa de altura (Polylepis tarapacana Phil.) en la Reserva Nacional Alto Loa, Región de Antofagasta [Assessment of the state of conservation and proposal of silvicultural management in natural formations of high altitude queñoa (Polylepis tarapacana Phil.) In the Alto Loa National Reserve, Antofagasta Region]. [degree’s thesis].Santiago: Universidad de Chile; 2010. Spanish.
  • Piña PZ. Caracterización de hábitat y distribución espacial de formaciones boscosas de queñoa (Polylepis tarapacana) en los territorios del Parque Nacional Salar del Huasco, región de Tarapacá [Habitat characterization and spatial distribution of forest formations of queñoa (Polylepis tarapacana) in the territories of the Salar del Huasco National Park, Tarapacá region]. Biodiversidata. 2015;3: 12–20. Spanish.
  • Ríos S Estudio de la distribución y caracterización ecológica de las poblaciones locales de queñoa de altura (Polylepis tarapacana Phil.) en el sector de la provincia de Iquique. Tarapacá. Chile [Study of the distribution and ecological characterization of local populations of highland queñoa (Polylepis tarapacana Phil.) In the sector of the province of Iquique. Tarapac;. Chile] [degree’s thesis].Santiago: Universidad de Chile; 1998. Spanish.
  • Domic AI, Mamani E, Camilo G. Fenología reproductiva de la kewiña (Polylepis tomentella, Rosaceae) en la puna semihúmeda de Chuquisaca (Bolivia) [Reproductive phenology of the kewiña (Polylepis tomentella, Rosaceae) in the semi-humid puna of Chuquisaca (Bolivia)]. Ecol Bol. 2013;48(1): 31–45. Spanish.
  • Hertel D, Wesche K. Tropical moist Polylepis stands at the treeline in East Bolivia: the effect of elevation on stand microclimate, above- and below-ground structure, and regeneration. Trees. 2008;22(3):303–315.
  • Facelli JM, Pickett STA. Plant litter: its dynamics and effects on plant community structure. The Bot Rev. 1991;57(1):1–33.
  • Peterson CJ, Facelli JM. Contrasting germination and seedling growth of Betula alleghaniensis and Rhus typhina subjected to various amounts and types of plant litter. Am J Bot. 1992;79(11):1209–1216.
  • López VL, Crisci G, Cuyckens GAE, et al. Conteo de marcas de yemas para estimar la edad en Polylepis tarapacana: Una técnica potencial [Bud mark count to estimate age in Polylepis tarapacana: A potential technique]. Ecol austral. 2021;31:182-189. Spanish.
  • Domic AI, Capriles JM. Allometry and effects of extreme elevation on growth velocity of the Andean tree Polylepis tarapacana Philippi (Rosaceae). Plant Ecol. 2009;205(2):223–234.
  • Hamrick JL, Lee JM. Effect of soil surface topography and litter cover on the germination, survival, and growth of musk thistle (Carduus nutans). Am J Bot. 1987;74(3):451–457.
  • Domic AI, Camilo GR, Capriles JM. Small-scale farming and grazing reduce regeneration of polylepis tomentella (rosaceae) in the semiarid andes of bolivia. Biotropica. 2014;46(1):106–113.
  • Uriarte M, Bruna EM, Rubim P, et al. Effects of forest fragmentation on the seedling recruitment of a tropical herb: assessing seed vs safe-site limitation. Ecology. 2010;91:1317–1328.