1,369
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Population genetic analysis of two Polylepis microphylla (Wedd.) Bitter (Rosaceae) forests in Ecuador

ORCID Icon, & ORCID Icon
Pages 184-197 | Received 19 Oct 2020, Accepted 13 Apr 2021, Published online: 07 May 2021

References

  • Skole D, Tucker C. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science. 1993;260(5116):1905–1910.
  • Sanderson EW, Jaiteh M, Levy MA, et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience. 2002;52(10):891–904.
  • Haddad N, Brudving L, Clobert J, et al. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci Adv. 2015;1(2):e1500052.
  • Amos W, Balmford A. When does conservation genetics matter? Heredity (Edinb). 2015;87(3):257–265. 2001.
  • Bijlsma R, Loeschcke V. Genetic erosion impedes adaptive responses to stressful environments. Evol Appl. 2012;5(2):117–129.
  • Wang R, Compton SG, Chen XY. Fragmentation can increase spatial genetic structure without decreasing pollen‐mediated gene flow in a wind-pollinated tree. Mol Ecol. 2011;20(21):4421–4432.
  • Teich I Análisis de la estructura genética espacial de especies arbóreas y su asociación con la variabilidad fenotípica y ambiental. Buenos Aires. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires; 2012.
  • Caicedo AL, Schaal BA. Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol. 2004;13(7):1871–1882.
  • Young A, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol. 1996;11(10):413–418.
  • DeSalle R, Amato G. The expansion of conservation genetics. Nat Rev Genet. 2004;5(9):702.
  • Hamrick JL. Response of forest trees to global environmental changes. For Ecol Manage. 2004;197(1–3):323–335.
  • Seltmann P, Hensen I, Renison D, et al. Biparental inbreeding depression, genetic relatedness and progeny vigour in a wind-pollinated treeline species in Argentina. Plant Ecol. 2009b;205(1):155–164.
  • Myers N, Mittermeier RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities. Nature. 2000;403(6772):853.
  • Hutter CR, Guayasamín JM, Wiens JJ. Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol Lett. 2013;16(9):1135–1144.
  • Anderson EP, Marengo J, Villalva R, et al. Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog SK, Martínez R, Jørgensen, editors. Climate change and biodiversity in the tropical Andes. São José dos Campos-Brazil: Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE);2011.1–14
  • Åkesson CM, Matthews-Bird F, Bitting M, Åkesson CM, Matthews-Bird F, Bitting M, et al. 2,100 years of human adaptation to climate change in the High Andes. Nat Ecol Evol. 2020;4(1):66–74.
  • Lippok D, Beck SG, Renison D, et al. Forest recovery of areas deforested by fire increases with elevation in the tropical Andes. For Ecol Manage. 2013;295:69–76.
  • Arango-Vélez N, Kattan GH. Effects of forest fragmentation on experimental nest predation in Andean cloud forest. Biol Conserv. 1997;81(1–2):137–143.
  • Armenteras D, Gast F, Villareal H. Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biol Conserv. 2003;113(2):245–256.
  • Hensen I, Cierjacks A, Hirsch H, et al. Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world’s highest tropical tree line species. Global Ecol Biogeogr. 2012;21(4):455–464.
  • Kessler M. The “Polylepis problem”: where do we stand? Ecotropica. 2002;8(2):97–110.
  • Kessler M Present and potential distribution of Polylepis (Rosaceae) forests in Bolivia. Biodiversity and Conservation of Neotropical Montane Forests. 1995;281–294.
  • Renison D, Cingolani AM, Suarez R. Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Rev Chil Hist Nat. 2002;75(4):719–727.
  • Teich I, Cingolani AM, Renison D, et al. Do domestic herbivores retard Polylepis australis Bitt. woodland recovery in the mountains of Córdoba Argentina? For Ecol Manage. 2005;219(2):229–241.
  • Cierjacks A, Salgado S, Wesche K, et al. Post‐fire population dynamics of two tree species in high-altitude Polylepis forests of central Ecuador. Biotropica. 2008;40(2):176–182.
  • Fjeldså J. Key areas for conserving the avifauna of Polylepis forests. Ecotropica. 2002;8(2):125–131.
  • Gareca EE, Hermy M, Fjeldså J, et al. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conservat. 2010;19(12):3327–3346.
  • Enrico L, Funes G, Cabido M. Regeneration of Polylepis australis Bitt. in the mountains of central Argentina. For Ecol Manage. 2004;190(2–3):301–309.
  • Romoleroux K, Cárate-Tandalla D, Erler R, et al. Plantas vasculares de los bosques de Polylepis en los páramos de Oyacachi. 1st. Quito-Ecuador: Centro de Publicaciones, Pontificia Universidad Católica del Ecuador; 2016.
  • Kessler M, Bosques de Polylepis. In: Moraes M, Øllgaard B, Kvist LP, editors. Botánica Económica de los Andes Centrales. La Paz-Bolivia: Universidad Mayor de San Andrés; 2006. p. 110–120.
  • Kessler M, Schmidt-Lebuhn AN. Taxonomical and distributional notes on Polylepis (Rosaceae). Organ Divers Evol. 2006;6(1):67–70.
  • Seltmann P, Cocucci A, Renison D, et al. Mating system, outcrossing distance effects and pollen availability in the wind-pollinated treeline species Polylepis australis Bitt. (Rosaceae) Basic Appl Ecol. 2009a;10(1):52–60.
  • Boza Espinoza TE, Quispe-Melgar HR, Kessler M. Taxonomic reevaluation of the Polylepis sericea complex (Rosaceae), with the description of a new species. Systemat Bot. 2019;44(2):324–334.
  • Boza Espinoza TE, Kessler M A monograph of the genus Polylepis (Rosaceae). Phytokeys. in prep.
  • Simpson BBA. Revision of the genus Polylepis (Rosaceae: sanguisorbeae). Smithson Contrib Bot. 1979;43:1–62.
  • Romoleroux K. Rosaceae 79. In: Harling G, Andersson L, editors. Flora of Ecuador. Göteborg: University of Gothenburg; 1996. p. 71–89.
  • Argollo J, Soliz C, Villalba R. Potencialidad dendrocronológica de Polylepis tarapacana en los Andes Centrales de Bolivia. Ecología en Bolivia. 2004;39(1):5–24.
  • Espinoza TEB, Romoleroux K, Kessler M. Taxonomic revaluation of the Polylepis pauta and P. sericea (Rosaceae) from Ecuador. Phytotaxa. 2020;454(2):111–126.
  • Romoleroux K. Rosaceae. In: León-Yánez S, Valencia R, Pitman N, editors. Libro Rojo de las Plantas Endémicas del Ecuador. Quito-Ecuador: Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador; 2011. p. 748–750.
  • United Nations Framework Convention on Climate Change (UNFCCC). Report of the conference of the parties on its seventh session, held at Marrakesh from 29 October to 10 November 2001, addendum part two: action taken by the conference of the parties, Volume I; 2001.
  • Polylepis microphylla. The IUCN red list of threatened species 2004 [internet]. Romoleroux K, Pitman N. [ cited 2021 Feb 2]. Available from: https://doi.org/10.2305/IUCN.UK.2004.RLTS.T36206A9987050
  • León-Yánez S, Valencia R, Pitman N, et al. Libro Rojo de las Plantas Endémicas del Ecuador. 2nd ed. Quito-Ecuador: Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador; 2011.
  • Bitter G. Revision der Gattung Polylepis. Botanische Jahrbücher für Systematik. 1911;45:564–656.
  • Schmidt‐Lebuhn AN, Fuchs J, Hertel D, et al. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biol. 2010;12(6):917–926.
  • Kramer AT, Ison JL, Ashley MV, et al. The paradox of forest fragmentation genetics. Conserv Biol. 2008;22(4):878–885.
  • Llorens TM, Tapper SL, Coates DJ, et al. Does population distribution matter? Influence of a patchy versus continuous distribution on genetic patterns in a wind‐pollinated shrub. J Biogeograph. 2017;44(2):361–374.
  • De Queiroz K. The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In: Howard DJ, Berlocher SH, editors. Endless forms: species and speciation. New York-USA: Oxford University Press; 1998. p. 57–75.
  • Jørgensen PM, León-Yánez S, editors. Catálogo de las Plantas Vasculares del Ecuador. St. Louis-USA: Missouri Botanical Garden Press; 1999. p. 633–668.
  • Mendoza W, Cano A. Diversidad del género Polylepis (Rosaceae, Sanguisorbeae) en los Andes peruanos. Revista Peruana de Biología. 2011;18(2):197–200.
  • Doyle J, Doyle J. Preservation of plant samples for DNA restriction endonuclease analysis. Taxon. 1987;36(4):715–722.
  • Harris DJ, Crandall KA. Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: cambaridae): implications for phylogenetic and microsatellite studies. Mol Biol Evol. 2000;17(2):284–291.
  • Gao Q, Zhang D, Duan Y, et al. Intraspecific divergences of Rhodiola alsia (Crassulaceae) based on plastid DNA and internal transcribed spacer fragments. Bot J Linnean Soc. 2012;168(2):204–215.
  • González-Tortuero E, Rusek J, Maayan I, et al. Genetic diversity of two Daphnia-infecting microsporidian parasites, based on sequence variation in the internal transcribed spacer region. Parasit Vectors. 2016;9(1):293.
  • Hapsari L, Azrianingsih R, Arumingtyas EL. Genetic variability and relationship of banana cultivars (Musa L.) from East Java, Indonesia based on the internal transcribed spacer region nrDNA sequences. J Trop Biol Conserv. 2018;15:101–120.
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gaelfand D, Sninsky J, et al., editors. PCR protocols: a guide to methods and applications. San Diego-USA: Academic Press; 1990. 315–322.
  • Yang JY, Pak JH. Phylogeny of Korean Rubus (Rosaceae) based on ITS (nrDNA) and trnL/F intergenic region (cpDNA). J Plant Biol. 2006;49(1):44–54.
  • Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–197.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004a;32(5):1792–1797.
  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004b;5(1):113.
  • evobiR: comparative and population genetic analyses [Internet]. Arlington(TX): R-project; [cited 2020 Jul 15]. Available from: https://CRAN.R-project.org/package=evobiR. 2015.
  • Marsjan PA, Oldenbroek JK Molecular markers, a tool for exploring genetic diversity. In: food and agriculture organization (FAO). The State of the World’s Animal Genetic Resources for Food and Agriculture, first draft. Rome-Italy: FAO; 2006. p. 374.
  • Nei M. Molecular evolutionary genetics. New York (NY): Columbia University Press; 1987.
  • Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131(2):479–491.
  • Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358–1370.
  • Holsinger KE, Weir BS. Genetics in geographically structured populations: definition, estimation and interpretation of F ST. Nat Rev Genet. 2009;10(9):639.
  • Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48.
  • Mardulyn P. Trees and/or networks to display intraspecific DNA sequence variation? Mol Ecol. 2012;21(14):3385–3390.
  • Paradis E, Pearse W. Analysis of haplotype networks: the randomized minimum spanning tree method. Meth Ecol Evolut. 2018;9(5):1308–1317.
  • Brown AH, Briggs JD. Sampling strategies for genetic. In: Falk AD, Holsinger KE, editors. Genetics and conservation of rare plants. New York: Oxford University Press; 1991. p. 99–119.
  • Ward SM, Jasieniuk M. Review: sampling weedy and invasive plant populations for genetic diversity analysis. Weed Sci. 2009;57(6):593–602.
  • Zhao R, Cheng Z, Lu W, et al. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Chinese Sci Bull. 2006;51(10):1219–1227.
  • Hale ML, Burg TM, Steeves TE. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PloS One. 2012;7(9):e45170.
  • Sánchez OJ Introducción al diseño experimental. Quito-Ecuador: Giro Creativo; 2017
  • Vranckx GU, Jacquemyn H, Muys B, et al. Meta‐analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol. 2012;26(2):228–237.
  • Schmidt-Lebuhn AN, Kessler M, Kumar M. Promiscuity in the Andes: species relationships in Polylepis (Rosaceae, Sanguisorbeae) based on AFLP and morphology. Systemat Bot. 2006;31(3):547–559.
  • Wright S. The genetical structure of populations. Ann Eugenics. 1951;15(1):323–354.
  • Willing EM, Dreyer C, Van Oosterhout C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One. 2012;7(8):e42649.
  • Schmidt-Lebuhn AN, Kumar M, Kessler M. An assessment of the genetic population structure of two species of Polylepis Ruiz & Pav. (Rosaceae) in the Chilean Andes. Flora-Morphol Distrib Funct Ecol Plants. 2006;201(4):317–325.
  • Julio N, Sobral A, Dueñas JR, et al. RAPD and ISSR markers indicate diminished gene flow due to recent fragmentation of Polylepis australis woodlands in central Argentina. Biochem Syst Ecol. 2008;36(5–6):329–335.
  • Aragundi S, Hamrick JL, Parker K. Genetic insights into the historical distribution of Polylepis pauta (Rosaceae) in the northeastern Cordillera Oriental of Ecuador. Conserv Gene. 2011;12(3):607–618.
  • Gareca EE, Breyne P, Vandepitte K, et al. Genetic diversity of Andean Polylepis (Rosaceae) woodlands and inferences regarding their fragmentation history. Bot J Linnean Soc. 2013;172(4):544–554.
  • Curtis H, Schnek A. Curtis Biología. 7th edition in Spanish. Buenos Aires-Argentina: Editorial Médica Panamericana; 2008. Chapter 18, Principios básicos de la genética de poblaciones; p. 355.
  • Ye Y, Li J, Wu C. Genetic diversity and population connectivity of the Asian green mussel Perna viridis in South China Sea, inferred from mitochondria DNA markers. Biochem Syst Ecol. 2015;61:470–476.
  • De Jong MA, Wahlberg N, Van Eijk M, et al. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PLoS One. 2011;6(6):e21385.
  • Mao M, Liu HL. Genetic diversity of Trichomonas vaginalis clinical isolates from Henan province in central China. Pathog Glob Health. 2015;109(5):242–246.
  • Bonan GB, Doney SC. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science. 2018;359(6375):eaam8328.
  • Davis MB, Shaw RG. Range shifts and adaptive responses to quaternary climate change. Science. 2001;292(5517):673–679.
  • McLaughlin JF, Hellmann JJ, Boggs CL, et al. Climate change hastens population extinctions. Proceedings of the National Academy of Sciences. 2002;99( 9):6070–6607