3,006
Views
1
CrossRef citations to date
0
Altmetric
Research Article

La temperatura y radiación solar explican diferencias en la distribución de dos árboles altoandinos (Polylepis spp.) localmente simpátricos en la Cordillera Blanca, Perú

ORCID Icon & ORCID Icon
Pages 327-340 | Received 31 Jul 2020, Accepted 20 May 2021, Published online: 12 Aug 2021

References

  • Gareca EE, Hermy M, Fjeldså J, et al. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conservat. 2010;19(12):3327–3346.
  • Herzog SK, Cahill J, Fjeldså J, et al. Ecology and conservation of High-Andean Polylepis forests. Ecotropica 2002;8:93–95.
  • Ridbäck U. A floristic study of Polylepis forest fragments in the central Andes of Ecuador [Master's Thesis]. Gotland(Sweden): Gotland University; 2008.
  • Romoleroux K, Tandalla DC, Erler R, et al. Plantas vasculares de los bosques de Polylepis en los páramos de Oyacachi. Ecuador: Centro de Publicaciones Pontificia Universidad Católica del Ecuador; 2016.
  • Fjeldså J. Key areas for conserving the avifauna of Polylepis forests. Ecotropica. 2002;8(2):125–131.
  • Yensen E, Tarifa T. Mammals of Bolivian Polylepis woodlands: guild structure and diversity patterns in the world’s highest woodlands. Ecotropica 2002;8:145–162.
  • Sevillano-Ríos CS, Rodewald AD, Morales LV. Ecología y conservación de las aves asociadas con Polylepis: ¿qué sabemos de esta comunidad cada vez más vulnerable? Ecología Austral. 2018;28:216–228.
  • Fjeldsa J, Kessler M. Conserving the biological diversity of Polylepis woodlands of the highlands of Peru and Bolivia: a contribution to sustainable natural resource management in the Andes.Denmark: Centre for Tropical Biodiversity and Nordic Foundation for Development and Ecology; 1996.
  • Rada F, Azócar A, Briceno B, et al. Carbon and water balance in Polylepis sericea, a tropical treeline species. Trees. 1996;10(4):218–222.
  • Fjeldså J. Polylepis forests–vestiges of a vanishing ecosystem in the Andes. Ecotropica. 2002;8(2):111–123.
  • Renison D, Hensen I, Suarez R, et al. Soil conservation in Polylepis mountain forests of Central Argentina: is livestock reducing our natural capital? Austral Ecol. 2010;35(4):435–443.
  • Vásquez E, Ladd B, Borchard N. Carbon storage in a high-altitude Polylepis woodland in the Peruvian Andes. Alpine Botany. 2014;124(1):71–75.
  • Fehse J, Hofstede R, Aguirre N, et al. High altitude tropical secondary forests: a competitive carbon sink? For Ecol Manage. 2002;163(1–3):9–25.
  • Cranford M, Mourato S. Community conservation and a two-stage approach to payments for ecosystem services. Ecol Econ. 2011;15(71):89–98.
  • Gosling WD, Hanselman JA, Knox C, et al. Long‐term drivers of change in Polylepis woodland distribution in the central Andes. J Veg Sci. 2009;20(6):1041–1052.
  • Alinari J, Von Müller A, Renison D. The contribution of fire damage to restricting high mountain Polylepis australis forests to ravines: insights from an un-replicated comparison. Ecología Austral. 2015;25(1):11–18.
  • Argibay DS, Renison D. Efecto del fuego y la ganadería en bosques de Polylepis australis (Rosaceae) a lo largo de un gradiente altitudinal en las montañas del centro de la Argentina. Bosque (Valdivia). 2018;39(1):145–150.
  • Purcell J, Brelsford A. Reassessing the causes of decline of Polylepis, a tropical subalpine forest. Ecotropica 2004;10:155–158.
  • Renison D, Cuyckens GA, Pacheco S, et al. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral. 2013;23(4):27–36.
  • Aucca C, Ramsay PM. Management of biodiversity and land use in southern Peru. Mountain Res Dev. 2005;25(3):287–289.
  • Fuentealba B, Sevillano-Ríos CS.Experiences of community rehabilitation with Queñual(Polylepis sp.) in the Department of Ancash,Peru.In:CecconE, PerezDR, editors.Beyond restoration ecology: social perspectives in Latin America and the Caribbean. Buenos Aires (Argentina):Vasquez Mazzini Editores;2017. p.315-330
  • Morales LV, Fuentealba B, Sevillano CS, et al. Oportunidades para acercar la ciencia a la práctica de la restauración de bosques y arbustales de Polylepis. Ecología Austral. 2018;28:291–300.
  • Renison D, Morales L, GÉ C, et al. Ecología y conservación de los bosques y arbustales de Polylepis: ¿qué sabemos y qué ignoramos? Ecología Austral. 2018 ;28:163–174.
  • Pinos J. Challenges and conservation implications of Polylepis woodlands in the Andean region: defining actions for sustainable management. Hacquetia. 2020 ;19:143-153.
  • Cerrón Macha J, del Castillo Ruiz JD, Thomas E, et al. Experiencias de restauración en el Perú. Lecciones aprendidas. Lima (Peru):Servicio Nacional Forestal y de Fauna Silvestre;2018.
  • Segovia-Salcedo MC, Domic A, Boza T, et al. Situación taxonómica de las especies del género Polylepis. Implicancias para los estudios ecológicos, la conservación y la restauración de sus bosques. Ecología Austral. 2018;28:188–201.
  • Cuyckens GA, Christie DA, Domic AI, et al. Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Global Planet Change. 2016;1(137):79–87.
  • Boza-Espinoza TE, Quispe-Melgar HR, Kessler M. Taxonomic reevaluation of the Polylepis sericea complex (Rosaceae), with the description of a new species. Systemat Bot. 2019 Jun 30;44(2):324–334.
  • Segovia MC. Los riesgos de la reforestación de los páramos con especies exóticas: el caso Polylepis racemosa. Propuestas Andinas. 2011;4:1–4.
  • Chepstow-Lusty A, Winfield M. Inca agroforestry: lessons from the past. AMBIO: J Hum Environ. 2000;29(6):322–328.
  • Mendoza W, Cano A. El género Polylepis en el Perú: taxonomía, morfología y distribución. Saarbrucken (Alemania): Editorial Académia Española; 2012.
  • Smith DN. Flora and vegetation of the Huascarán National Park, Ancash, Peru: with preliminary taxonomic studies for a manual of the flora [PhD Dissertations]. Iowa State Univ. 1988. DOI:https://doi.org/10.31274/rtd-180813-8885
  • Zutta BR, Rundel PW, Saatchi S, et al. Prediciendo la distribución de Polylepis: bosques Andinos vulnerables y cada vez más importantes. Revista Peruana De Biología. 2012;19(2):205–212.
  • Morales LV, Sevillano‐ Ríos CS, Fick S, et al. Differential seedling regeneration patterns across forest–grassland ecotones in two tropical treeline species (Polylepis spp.). Austral Ecol. 2018;43(5):514–526.
  • Parque Nacional Huascarán SERNANP. Plan Maestro 2010 – 2015. Vol. l. Lima: Imprenta CANO S.R.; 2010.
  • Shoobridge D [ Internet]. ParksWatch Protected Area Profile–Peru: Huascarán National Park.Durham (NC):ParksWatch;2005; [cited 2020 Jul 17]. Disponible en:https://parkswatch.org/parkprofiles/pdf/hunp_eng.pdf
  • Carey M, Huggel. C, Bury J, et al. An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca,Peru.Climatic Change. 2012;112:733-767.
  • Schauwecker S, Mario Rohrer D, Acuña AC, et al. Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global Planet Change. 2014;119:85–97.
  • Hellström RÅ, Fernández A, Mark BG, et al. Incorporating Autonomous Sensors and Climate Modeling to Gain Insight into Seasonal Hydrometeorological Processes within a Tropical Glacierized Valley.Annals of the American Association of Geographers. 2017;107(2):260–273.
  • Kaser G, Juen I, Georges C, et al. The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J Hydro. 2003;282(1–4):130–144. .
  • Sevillano-Ríos CS. Diversity, ecology, and conservation of bird communities of Polylepis woodlands in the northern Andes of Peru. [Master’s Thesis]. Ithaca(NY): Cornell University; 2016. DOI:https://doi.org/10.7298/X45D8PSK.
  • Sevillano-Ríos CS, Rodewald AD. Avian community structure and habitat use of Polylepis forests along an elevation gradient. PeerJ. 2017;27(5):e3220.
  • Simpson BB. A revision of the genus Polylepis (Rosaceae: sanguisorbeae).Washington D.C.: Smithsonian Institution Press; 1979. (Smithsonian Contributions to Botany;43)
  • Fick SE, Hijmans RJ. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–4315.
  • O’Donnell MS, Ignizio DA. Bioclimatic predictors for supporting ecological applications in the conterminous United States. Reston (VA):US Geological Survey; 2012. (US. Geological Survey Data Series; 691).
  • GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software. Version 7.2. Electronic Document: https://grass.osgeo.org. Open Source Geospatial Foundation; 2017.
  • Farr TG, Rosen PA, Caro E, et al. The shuttle radar topography mission. Rev Geophys. 2007;45:RG2004.
  • Oksanen J, Kindt R, Legendre P, et al.Vegan:Community Ecology Package. R package Version 2.5-6.2020 URL:https://CRAN.R-project.org/package=vegan.
  • R studio Team. RStudio: Integrated Development for R. Boston (MA):RStudio, PBC;2020. URL:http://www.rstudio.com/.
  • Bates D, Maechler M, Bolker B, et al. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015;67(1):1-48. doi:https://doi.org/10.18637/jss.v067.i01.
  • Hansen MC, Potapov PV, Moore R, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342(6160):850–853.
  • Tropicos.org.Saint Louis (MO):Missouri Botanical Garden;[cited 2020 Jul 17]. Available from: https://www.tropicos.org/home
  • Morales LV. Polylepis regeneration and the potential for forest expansion in the Peruvian Andes: the influence of cattle and environmental conditions. [Dissertation]. Davis (US): University of California; 2017.
  • Hoch G, Körner C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol. 2005;1(6):941–951.
  • Kessler M, Böhner J, Kluge J. Modelling tree height to assess climatic conditions at tree lines in the Bolivian Andes. Ecol Modell. 2007;207(2–4):223–233.
  • Toivonen JM, Horna V, Kessler M, et al. Interspecific variation in functional traits in relation to species climatic niche optima in Andean Polylepis (Rosaceae) tree species: evidence for climatic adaptations. Funct Plant Biol. 2014;41(3):301–312. .
  • Goldstein G, Meinzer FC, Rada F.Environmental biology of a tropical treeline species, Polylepis sericea. In:RundelPW, SmithAP, MeinzerFC, editors.Tropical Alpine Environments. Cambridge (UK):Cambridge University Press;1994. p. 129–149.
  • García-Plazaola JI, Rojas R, Christie DA, et al. Photosynthetic responses of trees in high-elevation forests: comparing evergreen species along an elevation gradient in the Central Andes. AoB Plants. 2015;7:plv058.
  • Bader MY, van Geloof I, Rietkerk M. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. 2007;191(1):33–45.
  • Bader MY, Ruijten JJ. A topography‐based model of forest cover at the alpine tree line in the tropical Andes. J Biogeography. 2008;35:711–723.
  • Kessler M, Toivonen JM, Sylvester SP, et al. Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Front Plant Sci. 2014;5:194.
  • Körner C. Alpine treelines: functional ecology of the global high elevation tree limits. Basel(Switzerland):Springer;2012.
  • Arnal H, Sampson A, Navarro G, et al. Mapa pan-andino de Bosques de Polylepis prioritarios para conservación [dataset] 2014 Aug 31[cited 2020 Dec 15].In: Zenodo.org [Internet] Lima(Peru):American Bird Conservancy and Comunidad Andina. Available from: DOI:https://doi.org/10.5281/zenodo.4174838
  • Toivonen JM, Gonzales-Inca CA, Bader MY, et al. Elevational shifts in the topographic position of Polylepis forest stands in the Andes of southern Peru. Forests. 2018;9(1):7.
  • Wintle BA, Kujala H, Whitehead A, et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc Nat Acad Sci. 2019;116(3):909–914.
  • Sevillano-Ríos CS, Rodewald A. Responses of Polylepis birds to patch and landscape attributes in the High Andes. Neotrop Biodivers. 2021;7(1):5–22.