3,813
Views
3
CrossRef citations to date
0
Altmetric
Research Article

¿Cómo avanzar en la conservación de los bosques de Polylepis y su diversidad biológica?

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 318-326 | Received 18 Jun 2021, Published online: 30 Jul 2021

References

  • Arnal H, Sampson A, Navarro G, et al. and ES. Mapa pan Andino de bosques de Polylepis prioritarios para conservación. USA; 2014.
  • Cuyckens GAE, Renison D, Morales L, et al. Ecología y conservación de los bosques y arbustales de Polylepis:¿ qué sabemos y qué ignoramos? 2018;28:163–174.
  • Renison D, Pacheco S, Pacheco S,,, et al. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecol Austral. 2013;23(1):27–36.
  • Cuyckens GAE, Christie DA, Domic AI, Domic AI, et al. Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Glob Planet Change. 2016;137:79–87.
  • Kessler M. Polylepis-Wälder Boliviens: taxa, Ökologie, Verbreitung-und Geschichte. In: Cramer. SJ, editor. Diss bot 246 diss bot. Schweizerbart’sche Verlagsbuchhandlung; 1995; 202-204.
  • Fjeldså J& MK. Conservación de la biodiversidad de los bosques de Polylepis de las tierras altas de Bolivia. Una contribución al manejo sustenable en los Andes. DIVA Technical Report 11. Santa Cruz de la Sierra; 2004.
  • Cingolani AM, Poca M, Giorgis MA, et al. Water provisioning services in a seasonally dry subtropical mountain: identifying priority landscapes for conservation. J Hydrol. 2015;525:178–187.
  • Kessler M, Toivonen JM, Sylvester SP, et al. Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Front Plant Sci. 2014;5:194.
  • Renison D, Chartier MP, Menghi M, et al. Spatial variation in tree demography associated to domestic herbivores and topography: insights from a seeding and planting experiment. For Ecol Manage. 2015;335:139–146.
  • Sylvester SP, Sylvester MDP V, Kessler M. Inaccessible ledges as refuges for the natural vegetation of the high Andes. J Veg Sci. 2014;25(5):1225–1234.
  • Sylvester SP, Heitkamp F, Sylvester MDP V, et al. Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Sci Rep. 2017;7(1):1–13.
  • Martínez O, Villarte F. Estructura dasométrica de las plantas de un parche de Polylepis besseri incarum y avifauna asociada en la Isla del Sol (Lago Titicaca, La Paz-Bolivia). Ecol En Boliv. 2009;44:36–49.
  • Arrázola S, Coronado I, Torrico L, et al. GN& WF. Polylepis incarum. Libr Rojo la Flora Amenazada Boliv Vol I-Zona Andin. La Paz; 2012. p. 44–45.
  • Arrázola S& IC. Polylepis pacensis. Libr Rojo la Flora Amenazada Boliv Vol I-Zona Andin. La Paz; 2012. p. 338–339.
  • Romoleroux K, Tandalla DC, Erler R, et al. Plantas vasculares de los bosques de Polylepis en los páramos de Oyacachi. Quito, Ecuador: Pontificia Universidad Católica del Ecuador; 2016.
  • Kessler M. The “Polylepis problem”: where do we stand. Ecotropica. 2002;8:97–110.
  • Gareca EE, Hermy M, Fjeldså J, et al. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conserv. 2010;19(12):3327–3346.
  • Renison D, Hensen I, Suarez R, et al. Soil conservation in Polylepis mountain forests of Central Argentina: is livestock reducing our natural capital? Austral Ecol. 2010;35(4):435–443.
  • Caiza J CS& KR. Libro de Resúmenes del V Congreso Internacional de Ecología y Conservación de los bosques de Polylepis. Quito, Ecuador: V CIP2019; 2019.
  • Kessler M. The genus polylepis (Rosaceae) in Bolivia. Candollea. 1995;50:131–171.
  • Simpson BB A revision of the genus polylepis (Rosaceae: Sanguisorbeae). Smithson Contrib to Bot. 1979;1–62.
  • Dickinson TA, Lo E, Talent N. Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst Evol. 2007;266(1–2):59–78.
  • Lo EYY, Stefanović S, Christensen KI, et al. Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. Mol Phylogenet Evol. 2009;51(2):157–168.
  • Robertson A, Rich TCG, Allen AM, et al. Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Mol Ecol. 2010;19(8):1675–1690.
  • Simpson BB. Speciation and specialization of polylepis in the Andes. In: Vulllemeire F, Monasterio M, editors. Trop Biogeogr. Oxford, UK: Oxford University Press; 1986. p. 304–316.
  • Romoleroux K. Flora of Ecuador. In: Harling G, Andersson L, editors. Rosaceae. Copenhagen: Council for Nordic Publications in Botany; 1996. p. 71–89.
  • Kessler M, Schmidt-Lebuhn AN. Taxonomical and distributional notes on Polylepis (Rosaceae). Org Divers Evol. 2006;6(1):67–70.
  • Kerr MS A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae), with emphasis on the Pleistocene radiation of the high Andean genus Polylepis. 2004.
  • Schmidt-Lebuhn AN, Kessler M, Kumar M. Promiscuity in the Andes: species relationships in polylepis (Rosaceae, Sanguisorbeae) Based on AFLP and morphology. Syst Bot. 2006;31(3):547–559.
  • Schmidt‐Lebuhn AN, Fuchs J, Hertel D, et al. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biol. 2010;12(6):917–926.
  • Sevillano-Ríos CS, Rodewald AD. Responses of polylepis birds to patch and landscape attributes in the high Andes. Neotrop Biodivers. 2021;7(1):5–22.
  • Cahill JRA, Merckx T, Van Dyck H, et al. Lower density of arthropod biomass in small high-Andes Polylepis fragments affects habitat use in insectivorous birds. Ecosphere. 2021;12(3):e03401.
  • Pinos J. Challenges and conservation implications of polylepis woodlands in the Andean region: defining actions for sustainable management. Hacquetia. 2020;19(2):143–153.
  • Ellenberg H. Man’s influence on tropical mountain ecosystems in South America. J Ecol. 1979;67(2):401–416.
  • Flantua SGA, O’dea A, Onstein RE, et al. The flickering connectivity system of the north Andean páramos. J Biogeogr. 2019;46(8):1808–1825.
  • Holtmeier F, Broll G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr. 2005;14(5):395–410.
  • Harsch MA, Hulme PE, McGlone MS, et al. Are treelines advancing? A global meta‐analysis of treeline response to climate warming. Ecol Lett. 2009;12(10):1040–1049.
  • Naccarella A, Morgan JW, Cutler SC, et al. Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. PLoS One. 2020;15(4):e0231339.
  • Schwab N, Kaczka RJ, Janecka K, et al. Climate change-induced shift of tree growth sensitivity at a central Himalayan treeline ecotone. Forests. 2018;9(5):267.
  • Greenwood S, Chen J, Chen C, et al. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Glob Chang Biol. 2014;20(12):3756–3766.
  • Bentz BJ, Régnière J, Fettig CJ, et al. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience. 2010;60(8):602–613.
  • Zutta BR, Rundel PW. Modeled shifts in Polylepis species ranges in the Andes from the Last Glacial Maximum to the present. Forests. 2017;8(7):232.
  • Valencia BG, Bush MB, Coe AL, et al. Polylepis woodland dynamics during the last 20,000 years. J Biogeogr. 2018;45(5):1019–1030.
  • Marcora P, Hensen I, Renison D, et al. The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Divers Distrib. 2008;14(4):630–636.
  • Camel V, Arizapana-Almonacid M, Pyles M, et al. Using dendrochronology to trace the impact of the hemiparasite Tristerix chodatianus on Andean polylepis trees. Plant Ecol. 2019;220(9):873–886.
  • Aragundi S, Hamrick JL, Parker KC Genetic insights into the historical distribution of polylepis pauta (Rosaceae) in the northeastern Cordillera oriental of Ecuador. Conserv Genet [Internet]. 2011;12:607–618. Available from: http://link.springer.com/10.1007/s10592-010-0165-x.
  • Gareca EE, Breyne P, Vandepitte K, et al. Genetic diversity of Andean Polylepis (Rosaceae) woodlands and inferences regarding their fragmentation history. Bot J Linn Soc. 2013;172(4):544–554.
  • Schmidt-Lebuhn AN, Kumar M, Kessler M. An assessment of the genetic population structure of two species of Polylepis Ruiz & Pav. (Rosaceae) in the Chilean Andes. Flora-Morphology, Distrib Funct Ecol Plants. 2006;201(4):317–325.
  • Hensen I, Teich I, Hirsch H, et al. Range-wide genetic structure and diversity of the endemic tree line species Polylepis australis (Rosaceae) in Argentina. Am J Bot. 2011;98(11):1825–1833.
  • Julio N, Sobral A, Dueñas JR, et al. RAPD and ISSR markers indicate diminished gene flow due to recent fragmentation of Polylepis australis woodlands in central Argentina. Biochem Syst Ecol. 2008;36(5–6):329–335.
  • Julio NB, Dueñas JCR, Renison D, et al. Genetic structure and diversity of Polylepis australis (Rosaceae) tree populations from central Argentina: implications for forest conservation. Silvae Genet. 2011;60(1–6):55–61.
  • Hensen I, Cierjacks A, Hirsch H, et al. Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world’s highest tropical tree line species. Glob Ecol Biogeogr. 2012;21(4):455–464.
  • Schultes RE. The importance of ethnobotany in environmental conservation. Am J Econ Sociol. 1994;53(2):202–206.
  • Monigatti M Ethnobotany in the Northern Peruvian Andes: local knowledge on medicinal plant use. University of Zurich, Institute of Systematic Botany; 2011.
  • Declaration K. Ethnobotany, the science of survival: a declaration from Kaua’i. Econ Bot. 2007;61:1–2.
  • Capriles JM, Flores E. The economic, symbolic, and social importance of the “keñua”(Polylepis spp.) during prehispanic times in the Andean highlands of Bolivia. Ecotropica. 2002;8:225–231.
  • Brewbaker JL, Hutton EM. Leucaena versatile tropical tree legume. Boulder, Colorado: New Agric Crop; 1979.
  • Rodríguez MA, Angueyra A, Cleef AM, et al. Ethnobotany of the Sierra Nevada del Cocuy-Güicán: climate change and conservation strategies in the Colombian Andes. J Ethnobiol Ethnomed. 2018;14(1):1–12.
  • Peña-Guamán C, Guerrero-Tipantuña M, Arcos-Bósquez V. et al. Cosmovisión Etnobiológica De La Cultura Ancestral Florística De La Comunidad Kichwa Quindihua (Ecuador). Ann Rom Soc Cell Biol. 2021; 3109–3130.
  • Boillat S, Mathez S-L, Rist S. Linking local knowledge, conservation practices and ecosystem diversity: comparing two communities in the Tunari National Park (Bolivia). Ethnobiol Conserv. 2013;2:1–28.
  • Hurtado R, Palabral-Aguilera AN, Domic AI, et al. ESTUDIOS ETNOBOTÁNICOS Y FLORÍSTICOS DE LOS BOSQUES AMENAZADOS DE POLYLEPIS INCARUM Y POLYLEPIS PACENSIS (ROSACEAE) EN BOLIVIA/Ethnobotanical and floristic studies of endangered Polylepis incarum and Polylepis pacensis (Rosaceae) forests in Bolivia. Bonplandia. 2018;27(2):113–126.
  • Zutta BR, Rundel PW, Saatchi S, et al. Prediciendo la distribución de Polylepis: bosques Andinos vulnerables y cada vez más importantes. Rev Peru Biol. 2012;19(2):205–212.
  • Rodriguez-Caton M, Andreu-Hayles L, Morales MS, et al. Different climate sensitivity for radial growth, but uniform for tree-ring stable isotopes along an aridity gradient in Polylepis tarapacana, the world’s highest elevation tree species. Tree Physiology. 2021. doi: https://doi.org/10.1093/treephys/tpab021.
  • Fjeldså J. Polylepis forests-vestiges of a vanishing ecosystem in the Andes. Ecotropica. 2002;8:111–123.
  • Steinfeld H, Gerber P, Wassenaar TD, et al. Livestock’s long shadow: environmental issues and options. Food & Agriculture Org. 2006
  • Wassenaar T, Gerber P, Verburg PH, et al. Projecting land use changes in the Neotropics: the geography of pasture expansion into forest. Glob Environ Chang. 2007;17(1):86–104.
  • Balthazar V, Vanacker V, Molina A, et al. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol Indic. 2015;48:63–75.
  • Calbi M, Clerici N, Borsch T, et al. Reconstructing long term high Andean forest dynamics using historical aerial imagery: a case study in Colombia. Forests. 2020;11(8):788.
  • Buytaert W, Célleri R, De Bièvre B, et al. Human impact on the hydrology of the Andean páramos. Earth-Sci Rev. 2006;79(1–2):53–72.
  • Sklenář P, Hedberg I, Cleef AM. Island biogeography of tropical alpine floras. J Biogeogr. 2014;41(2):287–297.
  • Marengo JA, Pabón JD, Díaz A, et al. Climate change: evidence and future scenarios for the Andean region. Clim Chang Biodivers Trop Andes IAI-SCOPE-UNESCO, Paris, Fr. 2011;110–127.
  • Sutherland WJ, Adams WM, Aronson RB, et al. One hundred questions of importance to the conservation of global biological diversity. Conserv Biol. 2009;23(3):557–567.
  • Sutherland WJ, Fleishman E, Mascia MB, et al. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol Evol. 2011;2(3):238–247.
  • Sutherland WJ, Freckleton RP, Godfray HCJ, et al. Identification of 100 fundamental ecological questions. J Ecol. 2013;101(1):58–67.
  • Carter J, Gronow J Recent experience in collaborative forest management: a review paper. 2005.
  • Sayer J, Campbell B, Campbell BM. The science of sustainable development: local livelihoods and the global environment. Cambridge: Cambridge University Press; 2004.