1,340
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Distribution shifts in habitat suitability and hotspot refugia of Andean tree species from the last glacial maximum to the Anthropocene

& ORCID Icon
Pages 297-309 | Received 31 Jul 2020, Accepted 16 Jul 2021, Published online: 22 Jul 2021

References

  • Clark PU, Dyke AS, Shakun JD, et al. The last glacial maximum. Science. 2009;325(5941):710–714.
  • Huntley B, Webb T III. Migration: species’ response to climatic variations caused by changes in the earth’s orbit. J Biogeograph. 1989;16(1):5–19.
  • Jackson ST, Overpeck JT. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology. 2000;26(S4):194–220.
  • Harrison S, Noss R. Endemism hotspots are linked to stable climatic refugia. Ann Bot. 2017;119(2):207–214.
  • Gavin DG, Fitzpatrick MC, Gugger PF, et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 2014;204(1):37–54.
  • Ramirez-Villegas J, Cuesta F, Devenish C, et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J Nat Conserv. 2014;22(5):391–404.
  • Fadrique B, Báez S, Duque Á, et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature. 2018;564(7735):207–212.
  • Cuesta F, Tovar C, Llambí LD, et al. Thermal niche traits of high alpine plant species and communities across the tropical Andes and their vulnerability to global warming. J Biogeograph. 2020;47(2):408–420.
  • Cuesta F, Llambí LD, Huggel C, et al. New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change. Regional Environ Change. 2019;19:1623–1642.
  • López‐Moreno JI, Morán‐Tejeda E, Vicente‐Serrano SM, et al. Recent temperature variability and change in the Altiplano of Bolivia and Peru. Int J Climatol. 2016;36(4):1773–1796.
  • Seiler C, Hutjes RWA, Kabat P. Climate variability and trends in Bolivia. J Appl Meteor Climatol. 2012;52:130–146.
  • Vicente-Serrano SM, Chura O, López-Moreno JI, et al. Spatio-temporal variability of droughts in Bolivia: 1955-2012. Int J Climatol. 2015;35(10):3024–3040.
  • Morales MS, Cook ER, Barichivich J, et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. PNAS. 2020;117(29):16816–16823.
  • Seiler C, Hutjes RWA, Kabat P. Likely ranges of climate change in Bolivia. J Appl Meteor Climatol. 2013;52(6):1303–1317.
  • Boza T, Taxonomic studies in Polylepis (Rosaceae) [ Ph.D. dissertation]. University of Zurich; 2020.
  • Kessler M, Schmidt-Lebuhn AN. Taxonomical and distributional notes on Polylepis (Rosaceae). Organ Divers Evol. 2006;6:67–70.
  • Fjeldså J, Kessler M. Conserving the biological diversity of polylepis woodlands of the highland of Peru and Bolivia: a contribution to sustainable natural resource management in the Andes. Copenhagen: NORDECO; 1996.
  • Kessler M. The genus Polylepis (Rosaceae) in Bolivia. Candollea. 1995;50:131–171.
  • Navarro G, Molina JA, de la Barra N. Classification of the high-Andean Polylepis forests in Bolivia. Plant Ecol. 2005;176(1):113–130.
  • Simpson BB. A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Washington, D.C.: Smithsonian Contributions to Botany; 1979.
  • Fjeldså J. The avifauna of the Polylepis woodlands of the Andean highlands: the efficiency of basing conservation priorities on patterns of endemism. Bird Conserv Int. 1993;3(1):37–55.
  • Gareca EE, Hermy M, Fjeldså J, et al. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conserv. 2010;19(12):3327–3346.
  • Gomez I, Calbimonte R, Domic AI, et al. Ensambles de aves de los bosques endémicos de Polylepis pacensis en Bolivia. Ornitología Neotropical. 2019;30:27–31.
  • Cierjacks A, Salgado S, Wesche K, et al. Post-fire population dynamics of two tree species in high-altitude Polylepis forests of central Ecuador. Biotropica. 2008;40(2):176–182.
  • Cuyckens GAE, Christie DA, Domic AI, et al. Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Global Planet Change. 2016;137:79–87.
  • Domic AI, Camilo GR, Capriles JM. Small-scale farming and grazing reduce regeneration of Polylepis tomentella (Rosaceae) in the Semiarid Andes of Bolivia. Biotropica. 2014;46(1):106–113.
  • Hensen I. Estudios ecológicos y fenológicos sobre Polylepis besseri Hieron en la Cordillera Oriental boliviana. Ecología En Bolivia. 1994;23:21–32.
  • Purcell J, Brelsford A. Reassessing the causes of decline of Polylepis, a tropical subalpine forest. Ecotropica. 2004;10:155–158.
  • Renison D, Hensen I, Suarez R, et al. Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? J Biogeograph. 2006;33(5):876–887.
  • Gosling WD, Hanselman JA, Knox C, et al. Long-term drivers of change in Polylepis woodland distribution in the central Andes. J Veg Sci. 2009;20(6):1041–1052.
  • Valencia BG, Bush MB, Coe AL, et al. Polylepis woodland dynamics during the last 20,000 years. J Biogeograph. 2018;45(5):1019–1030.
  • Urrego DH, Niccum BA, Drew CFL, et al. Fire and drought as drivers of early Holocene tree line changes in the Peruvian Andes. J Quater Sci. 2011;26(1):28–36.
  • Valencia BG, Matthews‐Bird F, Urrego DH, et al. Andean microrefugia: testing the Holocene to predict the Anthropocene. New Phytol. 2016;212(2):510–522.
  • Capriles JM. Mobile communities and pastoralist landscapes during the Formative period in the central Altiplano of Bolivia. Latin Am Antiquity. 2014;25(1):3–26.
  • Kuentz A, Ledru M-P, Thouret J-C. Environmental changes in the highlands of the western Andean Cordillera, southern Peru, during the Holocene. Holocene. 2012;22(11):1215–1226.
  • Hippe K, Jansen JD, Skov DS, et al. Cosmogenic in situ 14 C-10 Be reveals abrupt Late Holocene soil loss in the Andean Altiplano. Nat Commun. 2021;12(1):1–9.
  • Kessler M. The “Polylepis problem”: where do we stand? Ecotropica. 2002;8:97–110.
  • Gosling WD, Williams JJ. Ecosystem service provision sets the pace for pre-Hispanic societal development in the central Andes. Holocene. 2013;23(11):1619–1624.
  • Zutta BR, Rundel PW. Modeled shifts in Polylepis species ranges in the Andes from the Last Glacial Maximum to the present. Forests. 2017;8(7):232.
  • Franklin J. Mapping species distributions: spatial inference and prediction. Cambridge: Cambridge University Press; 2010.
  • Ivory SJ, Early R, Sax DF, et al. Niche expansion and temperature sensitivity of tropical African montane forests. Global Ecol Biogeogr. 2016;25(6):693–703.
  • Poelchau MF, Hamrick JL. Palaeodistribution modelling does not support disjunct Pleistocene refugia in several Central American plant taxa. J Biogeograph. 2013;40(4):662–675.
  • Roces-Díaz JV, Jiménez-Alfaro B, Chytrý M, et al. Glacial refugia and mid-Holocene expansion delineate the current distribution of Castanea sativa in Europe. Palaeogeograph Palaeoclimatol Palaeoecol. 2018;491:152–160.
  • Alba‐Sánchez F, López‐Sáez JA, Pando BB, et al. Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Diversity Distrib. 2010;16:214–228.
  • Ibisch PL, Beck SG, Gergkmann B, et al. Ecoregiones y ecosistemas. In: Ibisch PL, Merida G, editors. Biodiversidad: la riqueza de Bolivia, estado de conocimiento y conservación. Santa Cruz de la Sierra: Editorial FAN; 2003. p. 47–88.
  • Quantum GIS Development Team. Quantum GIS geographic information system. 2012.
  • Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190(3–4):231–259.
  • Zeng Y, Low BW, Yeo DCJ. Novel methods to select environmental variables in MaxEnt: a case study using invasive crayfish. Ecol Modell. 2016;341:5–13.
  • Zhang P, Dong X, Grenouillet G, et al. Species range shifts in response to climate change and human pressure for the world’s largest amphibian. SciTotal Environ. 2020;735:139543.
  • Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Modell. 2000;135(2–3):147–186.
  • Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv. 1997;24(1):38–49.
  • Peterson LE, Coleman MA. Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research. Int J Approx Reason. 2008;47(1):17–36.
  • Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561–577.
  • Das S, Baumgartner JB, Esperon-Rodriguez M, et al. Identifying climate refugia for 30 Australian rainforest plant species, from the last glacial maximum to 2070. Landscape Ecol. 2019;34(12):2883–2896.
  • Hanselman JA, Gosling WD, Paduano GM, et al. Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru). J Quater Sci. 2005;20(7–8):663–670.
  • Paduano GM, Bush MB, Baker PA, et al. A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeograph Palaeoclimatol Palaeoecol. 2003;194(1–3):259–279.
  • Chepstow-Lusty A, Bush MB, Frogley MR, et al. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quat Res. 2005;63(1):90–98.
  • Reese CA, Liu KB, Thompson LG. An ice-core pollen record showing vegetation response to late-glacial and Holocene climate changes at Nevado Sajama, Bolivia. Ann Glaciol. 2013;54(63):183–190.
  • Peng Y, Lachmuth S, Gallegos SC, et al. Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world’s highest treeline species. Am J Bot. 2015;102(10):1676–1684.
  • Schmidt-Lebuhn AN, Kumar M, Kessler M. An assessment of the genetic population structure of two species of Polylepis Ruiz & Pav. (Rosaceae) in the Chilean Andes. Flora - Morphol Distrib Func Ecol Plants. 2006;201(4):317–325.
  • Renison D, Cingolani AM, Suarez R. Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Rev Chil Hist Nat. 2002;75(4):719–727.
  • Williams JJ, Gosling WD, Brooks SJ, et al. Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000 years. Palaeogeograph Palaeoclimatol Palaeoecol. 2011;312(1–2):115–126.
  • Dobrowski SZ. A climatic basis for microrefugia: the influence of terrain on climate. Glob Chang Biol. 2011;17:1022–1035.
  • Domic AI, Capriles JM, Escobar-Torrez K, et al. Two thousand years of land-use and vegetation evolution in the Andean highlands of northern Chile inferred from pollen and charcoal analyses. Quaternary. 2018;1(3):32.
  • Graf K. Pollendiagramme Aus Den Anden: Eine Synthese Zur Klimageschichte Und Vegetationsentwicklung Seit Der Letzten Eiszeit. Zurich: Universität Zürich-Irchel-Geographisches Institut; 1992.
  • Graf K. Palinología del cuaternario reciente en los Andes del Ecuador, del Perú, y de Bolivia. Boletin Servicio Geologico Bolivia. 1989;4:69–91.
  • Urrego DH, Bush MB, Silman MR. A long history of cloud and forest migration from Lake Consuelo, Peru. Quat Res. 2010;73(2):364–373.
  • Arnal H, Sampson A, Navarro G, et al. Mapa Pan Andino de Bosques de Polylepis Prioritarios Para La Conservación. The Plains: American Bird Conservancy; 2014.
  • Fjeldså J. Key areas for conserving the avifauna of Polylepis forests. Ecotropica. 2002;8:125–131.
  • Hazzi NA, Moreno JS, Ortiz-Movliav C, et al. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. PNAS. 2018;115(31):7985–7990.
  • Quispe-Melgar HR, Sevillano-Ríos CS, Navarro Romo WC, et al. The Central Andes of Peru: a key area for the conservation of Polylepis forest biodiversity. J Ornithol. 2020;161:217–228.