2,488
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Oceanic primary production trend patterns along coast of Ecuador

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 379-391 | Received 17 Jul 2020, Accepted 26 Jul 2021, Published online: 18 Aug 2021

References

  • Barocio-León O, Millán-Núñez R, Santamaría-del-Ángel E, et al. Productividad primaria del fitoplancton en la zona eufótica del Sistema de la Corriente de California estimada mediante imágenes del CZCS. Cienc. Mar.2007;33(1):59–72.
  • Fiedler PC, Lavín MF. Oceanographic conditions of the Eastern Tropical Pacific. In: Glynn PW, Manzello DP, Enochs IC, editors. Coral reefs of the Eastern Tropical Pacific: persistence and loss in a dynamic environment. Dordrecht: Springer Netherlands; 2017. p. 59–83.
  • Gregor J, Maršálek B. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res. 2004;38(3):517–522.
  • Picado A, Alvarez I, Vaz N, et al. Chlorophyll concentration along the northwestern coast of the Iberian Peninsula vs. atmosphere-ocean-land conditions. J Coast Res. 2013;165:2047–2052.
  • Field C, Behrenfeld M, Randerson J, et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–240.
  • Rousseaux C, Gregg W. Interannual variation in phytoplankton primary production at a global scale. Remote Sen. 2014;6:1–14.
  • Hunt GL, McKinnell S. Interplay between top-down, bottom-up, and wasp-waist control in marine ecosystems. Prog Oceanogr. 2006;68(2):115–124.
  • Litchman E, De Tezanos P, Edwards K, et al. Global biogeochemical impacts of phytoplanckton: a trait-based perspective. J Ecol. 2015;103(6):1384–1396.
  • Canfield D, Glazer A, Falkowski P. The evolution and future of Earth’s nitrogen cycle. Science. 2010;330(6001):192–196.
  • Platt T, Sathyendranath S. Spatial structure of pelagic ecosystem processes in the global ocean. Ecosystems. 1999;2(5):384–394.
  • Reyes-Salinas A, Cervantes-Duarte R, Morales-Pérez R, et al. Variabilidad estacional de la productividad primaria y su relación con la estratificación vertical en la Bahía de la Paz, B.C.S. Hidrobiológica. 2003;13(2):103–110.
  • Yoder J, McClain C, Feldman GC. Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: a satellite view. Global Biogeochem Cy. 1993;7(1):181–193.
  • Rowe GT, Clifford CH, Smith KL Jr, et al. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature. 1975;255(5505):215.
  • Gameiro C, Cartaxana P, Cabrita MT, et al. Variability in chlorophyll and phytoplankton composition in an estuarine system. Hydrobiologia. 2004;525(1):113–124.
  • Racault M-F, Sathyendranath S, Brewin R, et al. Impact of El Niño Variability on oceanic phytoplankton. Front Mar Sci. 2017;4(133):1–15.
  • Shi D, Xu Y, Hopkinson B, et al. Effect of ocean acidification on iron availability to marine phytoplankton. Science. 2010;327(5966):676–679.
  • Winder M, Sommer U. Phytoplankton response to a changing climate. Hydrobiologia. 2012;698(1):5–16.
  • Gregg W, Conkright M, Ginoux P, et al. Ocean primary production and climate: global decadal changes. Geophys Res Lett. 2003;30(15):1–4.
  • Gregg W, Conkright M. Decadal changes in global ocean chlorophyll. Geophys Res Lett. 2002;29(15):1–4.
  • Brown C, Fulton E, Hobday A, et al. Effects of climate-driven primary production change on marine food webs: implications for fisheries and conservation. Glob Change Biol. 2010;16(4):1194–1212.
  • Gabor N. Un océano inexplorado: las especies marinas del Ecuador. Revista Desafío. 2002;3(5):32–34.
  • Cucalón E. Oceanografía y sistemas físicos. Sistemas biofísicos en el Golfo de Guayaquil. Quito, Ecuador: Comisión Asesora Ambiental de la Presidencia de la República del Ecuador; 1996, 1–109.
  • Perugachi-Salamea C, González-Narváez M, Pambabay-Calero J, et al. Caracterización oceanográfica del perfil costero ecuatoriano a través de métodos estadísticos aplicados a las estaciones fijas de monitoreo del INOCAR, serie a partir de 1981. Acta Oceanogr Pac. 2014;19(2):7–21.
  • Cruz M, Gabor N, Mora E, et al. The known and unknown about marine biodiversity in Ecuador (continental and insular). Gayana. 2003;67(2):232–260.
  • Cucalon E. Variabilidad oceanográfica frente a la costa del Ecuador durante el período 1981-1986. Boletín Erfen. 1986;19:11–26.
  • Lavín MF, Fiedler PC, Amador JA, et al. A review of eastern tropical Pacific oceanography: summary. Prog Oceanogr. 2006;69(2–4):391–398.
  • Morán-Tejeda E, Bazo J, López-Moreno JI, et al. Climate trends and variability in Ecuador (1966–2011). Int J Climatol. 2016;36(11):3839–3855.
  • Sosa A. El fenómeno El Niño 1997–1998. Memoria, retos y soluciones. Quito, Ecuador: Corporación Andina de Fomento; 2000.
  • Tapia M, Naranjo C. Aspectos oceanográficos del plancton y su relación con el frente ecuatorial, durante septiembre del 2011. Acta Oceanogr Pac. 2012;17(1):67–91.
  • Naranjo C, Tapia M. Composición y abundancia del plancton en la zona costera del Ecuador, en mayo de 2013. Acta Oceanogr Pac. 2017;21(1):27–45.
  • Tapia M, Naranjo C. Fitoplancton en el Golfo de Guayaquil externo, durante enero de 2014. Acta Oceanogr Pac. 2017;21(1):46–58.
  • Tapia M, Naranjo C. Caracterización del plancton en Bahía de Caráquez y en el estuario del río Chone, Ecuador durante marzo de 2012. Acta Oceanogr Pac. 2015;20(1):57–69.
  • Gualancañay E, Tapia M, Naranjo C, et al. Caracterización biológica de la bahía de Jaramijó en la costa ecuatoriana, 2008. Acta Oceanogr Pac. 2010;16(1):33–52.
  • Torres G. Composición y distribución del fitoplancton en aguas costeras ecuatorianas durante La Niña (septiembre 2001) [Tesis de maestría]. Guayaquil, Ecuador: Universidad de Guayaquil; 2010.
  • Pesantes F. Los dinoflagelados como indicadores de “El Niño” en el mar ecuatoriano. Acta Oceanogr Pac. 1983;2(1):84–117.
  • Lee Z, Marra J, Perry MJ, et al. Estimating oceanic primary productivity from ocean color remote sensing: a strategic assessment. J Mar Syst. 2015;149:50–59.
  • Valdez-Holguín J, Gaxiola-Castro G, Cervantes-Duarte R. Productividad primaria en el Golfo de California calculada a partir de la relación de irradiancia superficial y clorofila de la zona eufótica. Cienc. Mar.1995;21(3):311–329.
  • Instituto Oceanográfico de la Armada. Información general de la República del Ecuador. Derrotero. De la costa continental e insular del Ecuador. Guayaquil, Ecuador: INOCAR; 2012.
  • Boothroyd J, Ayon H, Robadue D, et al. Características de la líneas costera del Ecuador y recomendaciones para su manejo. Guayaquil, Ecuador: International Coastal Resources Management Program; 1994.
  • Instituto Oceanográfico de la Armada. Derrotero. De la costa continental e insular del Ecuador. Guayaquil, Ecuador: INOCAR; 2005.
  • NASA GFSC. Moderate-resolution Imaging Spectroradiometes (MODIS) Aqua Ocean Color Data. Greenbelt, MD, USA: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group; 2018 [2019/04/13]. Available from: https://oceancolor.gsfc.nasa.gov/data/aqua
  • JPL MUR MEaSUREs Project. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1). PO.DAAC, CA, USA; 2015 [2019/04/13]. Available from: https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
  • Mendelssohn R. xtractomatic: Accessing Environmental Data from ERD’s ERDDAP Server. R package version 3.4.2; 2018.
  • R Core Team. R: A language and environment for statistical computing. R Foundation fot Statistical Computing. Vienna, Austria; 2018.
  • Honaker J, King G, Blackwell M. Amelia II: a program for missing data. J Stat Softw. 2011;45(7):1–47.
  • Pittman NA, Strutton PG, Johnson R, et al. An assessment and improvement of satellite ocean color algorithms for the Tropical Pacific Ocean. J Geophys Res Oceans. 2019;124(12):9020–9039.
  • Chin TM, Vazquez-Cuervo J, Armstrong EM. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens Environ. 2017;200:154–169.
  • Stuart A, Kendall M, Ord JK. The advanced theory of statistics. Vol 3: Design and analysis of time-series. London, UK: Griffin; 1983.
  • Nemenyi P. Distribution-free Multiple Comparisons [ Ph.D. thesis]. Princeton University; 1963.
  • Hirsch RM, Slack JR, Smith RA. Techniques of trend analysis for monthly water quality data. Water Resour Res. 1982;18(1):107–121.
  • Pohlert T. Trend: Non-parametric trend tests and change-point detection. R package version 1.1.1; 2018.
  • Zar JH. Biostatistical Analysis. 5 ed. New Jersey, United States: Prentice Hall; 2010.
  • Cao M, Prince SD, Small J, et al. Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems. 2004;7(3). DOI:https://doi.org/10.1007/s10021-003-0189-x.
  • Behrenfeld MJ, O’Malley RT, Siegel DA, et al. Climate-driven trends in contemporary ocean productivity. Nature. 2006;444(7120):752–755.
  • Ramírez B, Pizarro E. Distribución de clorofila a y feopigmentos en los canales australes chilenos comprendidos entre Puerto Montt y la Laguna San Rafael, Chile. Cienc Tecnol. 2005 Mar;28(1):45–62.
  • Chavez FP, Messié M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog Oceanogr. 2009;83(1):80–96.
  • Brzezinski MA, Baines SB, Balch WM, et al. Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep-Sea Res Pt II: Top Stud Oceanogr. 2011;58(3):493–511.
  • Lalli CM, Parsons TR. Biological oceanography: an introduction. 2nd ed. Burlington, United States: Elsevier Butterworth-Heinemann; 2006.
  • Terán M, Campos F, Clark K, et al. Portafolio de sitios prioritarios para la conservación dentro de la Unidad de Planificación Ecorregional Pacífico Ecuatorial: Componente marino. Quito, Ecuador: The Nature Conservancy; 2004.
  • Montecino V, Lange C. The Humboldt Current System: ecosystem components and processes, fisheries, and sediments studies. Prog Oceanogr. 2009;83(1–4):65–79.
  • Salcedo J, Coello D. Dinámica del plancton en la primera milla náutica de la costa ecuatoriana, provincia de Manabí. La Técnica. 2019;(21):1–16.
  • Salcedo J, Coello D. Dinámica del plancton en la primera milla náutica frente a la provincia de El Oro, Ecuador. Rev Biol Trop. 2018;66(2):836–847.
  • Naranjo C, Tapia M. Composición, distribución y abundancia del plancton en el estuario de San Lorenzo, Esmeraldas-Ecuador. Acta Oceanogr Pac. 2002;11(1):113–128.
  • Prado M, Trocccoli-Ghinaglia L, Cajas J. Análisis del estado trófico y microfitoplancton de la zona costera de la provincia del Guayas, Ecuador. Bol Invest Mar Cost. 2017;46(2):91–114.
  • Tréguer P, Bowler C, Moriceau B, et al. Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci. 2018;11(1):27–37.
  • Coello D, Prado M. Variabilidad del fitoplancton y microzooplancton frente a la costa ecuatoriana durante 1995–1999. Boletín especial INP (Ecuador); 1999, 72–108.
  • Tapia M, Naranjo C. Diversidad del plancton en el estuario interior de Puerto Bolívar, Ecuador durante julio de 2002. Acta Oceanogr Pac. 2004;12(1):29–49.
  • Iriarte JL, Vargas CA, Tapia FJ, et al. Primary production and plankton carbon biomass in a river-influenced upwelling area off Concepción, Chile. Prog Oceanogr. 2012;92–95:97–109.
  • Dasgupta S, Singh RP, Kafatos M. Comparison of global chlorophyll concentrations using MODIS data. Adv Space Res. 2009;43(7):1090–1100.
  • Boyce DG, Dowd M, Lewis MR, et al. Estimating global chlorophyll changes over the past century. Prog Oceanogr. 2014;122:163–173.
  • Trenberth KE, Jones PD, Ambenje P, et al. Observations: surface and Atmospheric Climate Change. In: Solomon S, Qin D, Manning M, et al., editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom - New York, United States: Cambridge University Press; 2007. p. 996.
  • Marrari M, Piola AR, Valla D. Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in Large Marine Ecosystems around South and Western Central America. Front Mar Sci. 2017;4(372). DOI:https://doi.org/10.3389/fmars.2017.00372
  • Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466(7306):591–596.
  • Gregg W, Casey N, McClain C. Recent trends in global ocean chlorophyll. Geophys Res Lett. 2005;32(3). DOI:https://doi.org/10.1029/2004GL021808
  • Hurtado M, Hurtado-Domínguez M, Soto L, et al. Áreas costeras y marinas protegidas del Ecuador. Quito, Ecuador: Ministerio del Ambiente; 2010.
  • Soledispa B. El fenómeno El Niño 97–98 y sus efectos en las costas ecuatorianas. Acta Oceanogr Pac. 2000;10(1):181–188.
  • Nieto J, Martínez R, Regalado J, et al. Análisis de tendencia de series de tiempo oceanográficas y meteorológicas para determinar evidencias de cambio climático en las costa del Ecuador. Acta Oceanogr Pac. 2002;11(1):17–21.
  • Breaker L, Loor H, Carroll D. Trends in sea surface temperature off the coast of Ecuador and the major processes that contribute to them. J Mar Syst. 2016;164:151–164.
  • Stocker T, Qin D, Plattner G-K, et al. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, United States: Cambridge University Press; 2013. p. 1535.
  • Belkin IM. Rapid warming of Large Marine Ecosystems. Prog Oceanogr. 2009;81(1–4):207–213.
  • Zevallos-Rosado J. Análisis comparativo de la temperatura superficial del mar (TSM) en la región del Pacífico Este Tropical (PET) [ Tesis de licenciatura]. Bahía, Manabí, Ecuador: Pontificia Universidad Católica del Ecuador - Sede Manabí; 2020.
  • Dai A, Fyfe JC, Xie S-P, et al. Decadal modulation of global surface temperature by internal climate variability. Nat Clim Change. 2015;5(6):555.
  • Dai A. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim Dyn. 2013;41(3):633–646.
  • Kosaka Y, Xie S-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature. 2013;501(7467):403.
  • England MH, McGregor S, Spence P, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change. 2014;4(3):222.
  • Chavez F, Messié M, Pennington T. Marine primary production in relation to climate variability and change. Annu Rev Mar Sci. 2011;3(1):227–260.
  • Ndungu J, Monger B, Augustijn D, et al. Evaluation of spatio-temporal variations in chlorophyll-a in Lake Naivasha, Kenya: remote-sensing approach. Int J Remote Sens. 2013;34(22):8142–8155.
  • Gong G-C, Wen Y-H, Wang B-W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Res Pt II: Top Stud Oceanogr. 2003;50(6):1219–1236.
  • Tang DL, Ni IH, Müller-Karger FE, et al. Analysis of annual and spatial patterns of CZCS-derived pigment concentration on the continental shelf of China. Cont Shelf Res. 1998;18(12):1493–1515.
  • Nezlin NP, Kostianoy AG, Gregoire M. Patterns of seasonal and interannual changes of surface chlorophyll concentration in the Black Sea revealed from the remote sensed data. Remote Sens Environ. 1999;69(1):43–55.
  • Gitelson AA, Schalles JF, Hladik CM. Remote chlorophyll-a retrieval in turbid, productive estuaries: chesapeake Bay case study. Remote Sens Environ. 2007;109(4):464–472.
  • Barbier EB. Marine ecosystem services. Curr Biol. 2017;27(11):R507–R510.
  • Bell JD, Ganachaud A, Gehrke PC, et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat Clim Change. 2013;3(6):591–599.
  • Sumaila UR, Cheung WWL, Lam VWY, et al. Climate change impacts on the biophysics and economics of world fisheries. Nat Clim Change. 2011;1(9):449–456.
  • Ramirez F, Afan I, Davis LS, et al. Climate impacts on global hot spots of marine biodiversity. Sci Adv. 2017;3(2):e1601198.
  • Alatorre-Ramirez VG, Galván-Magaña F, Torres-Rojas YE, et al. Trophic segregation of mixed schools of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) caught in the eastern tropical Pacific Ocean. Fish Bull. 2017;115(2):252–268.
  • Cheung WWL, Lam VWY, Sarmiento JL, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol. 2010;16(1):24–35.
  • Pennington JT, Mahoney KL, Kuwahara VS, et al. Primary production in the eastern tropical Pacific: a review. Prog Oceanogr. 2006;69(2–4):285–317.
  • Martinez-Ortiz J, Aires-da-silva AM, Lennert-Cody CE, et al. The Ecuadorian artisanal fishery for large pelagics: species composition and spatio-temporal dynamics. PLoS One. 2015;10(8):e0135136.
  • MAE. Valoración economica del aporte del Sistema Nacional de Áreas Protegidas: Turismo e hidroelectricidad. Quito, Ecuador: Ministerio de Ambiente Ecuador; 2015.