12,156
Views
33
CrossRef citations to date
0
Altmetric
Review Article

A review of the potential impacts of climate change on the safety and performance of bridges

ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon
Pages 192-212 | Received 24 Dec 2018, Accepted 07 Mar 2019, Published online: 01 Apr 2019

References

  • Aalami, B. O. (1998). Time-dependent analysis of post-tensioned concrete structures. Progress in Structural Engineering and Materials, 1(4), 384–391.
  • Abdul Hakkim, V. M., Praveena, N., Rakhi, J. F., & Ajay Gokul, A. J. (2013). Impact study of Koottayi regulator cum bridge. International Journal of Engineering Research and Development, 9(3), 1–4.
  • Ajith, M. P., & James, M. K. (2016). Impact of Chamravattam regulator cum bridge on Bharathapuzha river and adjacent areas. Indian Journal of Economics and Development, 4(1), 2320–9828.
  • Andrady, A. L., Hamid, H. S., & Torikai, A. (2003). Effects of climate change and UV-B on materials. Photochemical and Photobiological Sciences, 2, 68–72.
  • Ankum, P. (2002). Design of open-channels and hydraulic structures. Delft, the Netherlands: Section Water Management, Delft University of Technology.
  • Anyala, M., Odoki, J. B., & Baker, C. (2011, January–February). Assessment of the impact of climate change on road maintenance. In J. A. Mwakali & H. M. Alinaitwe (Eds.), Proceedings of the 2nd international conference on advances in engineering and technology (AET2011) 457–463. Entebbe, Uganda: MacMillan.
  • Army, U. S., & Engineers, C. O. (2006). Engineering and design-ice engineering (engineer manual EM 1110-2-1612). Washington, DC: Department of the Army, U.S. Army Corps of Engineers.
  • Arnell, N. W., & Gosling, S. N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351–364.
  • Arneson, L., Zevenbergen, L., Lagasse, P., & Clopper, P. (2012). Evaluating scour at bridges fifth edition (Report No. FHWA-HIF-12-003) (HEC-18). Washington, DC: FHWA.
  • Balaguru, P. N., & Gopu, V. J. (2016). Repair of morganza spillway bridge bent pile cap using carbon fiber reinforcement (CFR) (Report No. FHWA/LA.15/552). Baton Rouge, LA: Department of Civil and Environmental Engineering, Louisiana State University.
  • Bank, T. W. (2012). Turn down the heat-why a 4 °C warmer world must be avoided. (A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics). Washington, DC: The World Bank.
  • Bastidas-Arteaga, E., Schoefs, F., Stewart, M. G., & Wang, X. (2013). Influence of global warming on durability of corroding RC structures: A probabilistic approach. Engineering Structures, 51(PartA), 259–266.
  • Bastidas-Arteaga, E., & Stewart, M. G. (2015). Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion. Structural Safety, 52, 40–53.
  • Batchabani, E., Sormain, E., & Fuamba, M. (2016). Potential impacts of projected climate change on flooding in the riviere des prairies Basin, Quebec, Canada: One-dimensional and two-dimensional simulation-based approach. Journal of Hydraulic Engineering, 21(12), 05016032.
  • Bažant, Z. P., & Baweja, S. (1995). Creep and shrinkage prediction model for analysis and design of concrete structures-model B3. Materials and Structures, 28(357–365), 415–430.
  • Bažant, Z. P., Hubler, M. H., & Yu, Q. (2011). Pervasiveness of excessive segmental bridge deflections: Wake-up call for creep. ACI Structural Journal, 108(6), 766–774.
  • Bažant, Z. P., & Panula, L. (1978). Practical prediction of time-dependent deformations of concrete. Materials and Structures (RILEM, Paris), Part IV, 11, 425–434.
  • Beck, M. W., Losada, I. J., Menéndez, P., Reguero, B. G., Díaz-Simal, P., & Fernández, F. (2018). The global flood protection savings provided by coral reefs. Nature Communications, 9, 2186.
  • Bell, K. (2008). Timber bridges. In In Leonardo da Vinci Pilot Project TEMTIS. 209–226. Handbook 1- Timber structures. Retrieved from http://fast10.vsb.cz/temtis/en/
  • Beltaos, S. (2004). Climate impacts on the ice regimes of an Atlantic river. Nordic Hydrology, 35(2), 81–99.
  • Beltaos, S., & Burrell, B. C. (2003). Climatic change and river ice breakup. Canadian Journal of Civil Engineering, 30(1), 145–155.
  • Beltaos, S., Burrell, B. C., Miller, L., & Sullivan, D. (2003, June). Hydraulic interaction between ice and bridges. Paper presented at the 12th workshop on the hydraulics of ice covered rivers, Edmonton, AB, Canada. CGU HS Committee on River Ice Processes and the Environment.
  • Berggren, K. (2007). Urban drainage and climate change - impact assessment (Licentiate thesis). Retrieved from www.diva-portal.org/smash/get/diva2:998949/FULLTEXT01.pdf
  • Björnsson, I. (2015). Holistic approach in engineering design: Controlling risks from accidental hazards in bridge design (Doctoral dissertation). Retrieved from http://lup.lub.lu.se/record/8052270
  • Bloom, A., Kotroni, V., & Lagouvardos, K. (2008). Climate change impact of wind energy availability in the eastern mediterranean using the regional climate model PRECIS. Natural Hazards and Earth System Sciences, 8, 1249–1257.
  • Borges, J. F. (1997). Basic concepts of structural design. In C. G. Soares (Ed.), Probabilistic methods for structural design (pp. 1–15). Dordrecht, Netherlands: Kluwer.
  • Briaud, J. L., Brandimarte, L., Wang, J., & D’Odorico, P. (2007). Probability of scour depth exceedance owing to hydrologic uncertainty. Georisk, 1(2), 77–88.
  • Briaud, J. L., Gardoni, P., & Yao, C. (2014). Statistical, risk, and reliability analyses of bridge scour. Journal of Geotechnical and Geoenvironmental Engineering, 140(2), 04013011.
  • Brown, T. G., Tibbo, J. S., Tripathi, D., Obert, K., & Shrestha, N. (2010). Extreme ice load events on the confederation bridge. Cold Regions Science and Technology, 60, 1–14.
  • Brun, M., Giaccu, G. F., Movchan, A. B., & Slepyan, L. I. (2014). Transition wave in the collapse of the san saba bridge. Frontiers in Materials, 1, 1–12.
  • Cady, P. D., & Weyers, R. E. (1984). Deterioration rates of concrete bridge decks. Journal of Transportation Engineering, 110(1), 34–44.
  • Cannon, S. H., & DeGraff, J. (2009). The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change. In K. Sassa & P. Canuti (Eds.), Landslides – disaster risk reduction (pp. 177–190). Berlin & Heidelberg, Germany: Springer-Verlag.
  • Capon, R., & Oakley, G. (2012). Climate change risk assessment for the built environment sector. (defra project code GA0204). London: Department for Environment, Food and Rural Affairs.
  • Carll, C., & Wiedenhoeft, A. C. (2009). Moisture-related properties of wood and the effects of moisture on wood and wood products. In H. R. Trechsel & M. T. Bomberg (Eds.), Moisture control in buildings: The key factor in mold prevention (pp. 54–79). West Conshohocken, PA,USA: ASTM International.
  • Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Silva Santos, C. (2017). Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renewable Energy, 101, 29–40.
  • Changnon, S. A., Kunkel, K. E., & Reinke, B. C. (1996). Impacts and responses to the 1995 heat wave: A call to action. Bulletin of the American Meteorological Society, 77, 1497–1506.
  • Chanson, H. (2004). The hydraulics of open channel flow: An introduction: Basic principles, sediment motion, hydraulic modelling, design of hydraulic structures. Oxford: Elsevier Butterworth- Heinemann.
  • Chapman, R. J. (2001). The controlling influences on effective risk identification and assessment for construction design management. International Journal of Project Management, 19, 147–160.
  • Charles, J. A., & Watts, K. S. (1996). The assessment of the collapse potential of fills and its significance for building on fill. Proceedings Institution of Civil Engineers-Geotechnical Engineering, 119(1), 15–28.
  • Chaves, I. A., Melchers, R. E., Peng, L., & Stewart, M. G. (2016). Probabilistic remaining life estimation for deteriorating steel marine infrastructure under global warming and nutrient pollution. Ocean Engineering, 126, 129–137.
  • Chen, H., Lee, C. F., & Law, K. T. (2004). Causative mechanisms of rainfall-induced fill slope failures. Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 593–602.
  • Cheung, C. W. S., Walsh, F. C., Campbell, S. A., Chao, W. T., & Beech, I. B. (1994). Microbial contributions to the marine corrosion of steel piling. International Biodeterioration & Biodegradation, 1994, 259–274.
  • Chin, J. W., Nguyen, T., & Aouadi, K. (1997). Effects of environmental exposure on fiber-reinforced plastic (FRP) materials used in construction. Journal of Composites Technology and Research, 19(4), 205–213.
  • Chok, Y. H., Kaggwa, W. S., Jaksa, M. B., & Griffiths, D. V. (2004, February). Modelling the effects of vegetation on stability of slopes. In G. Farquhar, P. Kelsey, J. Marsh, & D. Fellows (Eds.), roceedings of the 9th Australia New Zealand conference on geomechanics 391–397. Auckland, New Zealand: Centre for Continuing Education, The University of Auckland.
  • Ciabatta, L., Camici, S., Brocca, L., Ponziani, F., Stelluti, M., Berni, N., & Moramarco, T. (2016). Assessing the impact of climate-change scenarios on landslide occurrence in Umbria region, Italy. Journal of Hydrology, 541, 285–295.
  • Collins, B. D., & Stock, G. M. (2016). Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nature Geoscience, 9, 395–401.
  • Comité Europeen du Beton. (1963). Pratiques a l’Usage des Constructeurs. Bulletin d’Infonnation nQ 39. Paris, France: Comité Europeen du Beton.
  • Cook, W., Barr, P. J., & Halling, M. W. (2015). Bridge failure rate. Journal of Performance of Constructed Facilities, 29(3), 04014080.
  • Corti, T., Muccione, V., Kollner-Heck, P., Bresch, D., & Seneviratne, S. I. (2009). Simulating past droughts and associated building damages in France. Hydrology and Earth System Sciences, 13(9), 1739–1747.
  • Corus Construction and Industrial. (2005). A corrosion protection guide: For steel bearing piles in a temperate climate. North Lincolnshire: Corus Construction and Industrial.
  • Cradden, L. C., Harrison, G. P., & Chick, J. P. (2006, June). Climate change and the UK wind resource. Paper presented at European conference on impacts of climate change on renewable energy sources (EURENEW), Iceland.
  • Crilly, M. (2001). Analysis of a database of subsidence damage. Structural Survey, 19(1), 7–15.
  • Darwin, D., Browning, J. A., Gong, L., & Hughes, S. R. (2008). Effects of deicers on concrete deterioration. ACI Materials Journal, 105(6), 622–627.
  • Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44, 815–826.
  • Davy, R., Gnatiuk, N., Pettersson, L., & Bobylev, L. (2018). Climate change impacts on wind energy potential in the European domain with a focus on the black sea. Renewable and Sustainable Energy Reviews, 81, 1652–1659.
  • Deng, L., & Cai, C. S. (2010). Bridge scour: Prediction, modeling, monitoring, and countermeasures-review. Practice Periodical on Structural Design and Construction, 15(2), 125–134.
  • Dikanski, H., Hagen-Zanker, A., Imam, B., & Avery, K. (2016). Climate change impacts on railway structures: Bridge scour. Engineering Sustainability, 170(ES5), 237–248.
  • Dikanski, H., Imam, B., & Hagen-Zanker, A. (2018). Effects of uncertain asset stock data on the assessment of climate change risks: A case study of bridge scour in the UK. Structural Safety, 71, 1–12.
  • DoT (Department of Transport). (2005). The changing climate: Its impact on the department of transport. UK: Department of Transport. http://www.dft.gov.uk/pgr/scienceresearch/key/thechangingclimateitsim
  • Ekström, G., Nettles, M., & Tsai, V. C. (2006). Seasonality and increasing frequency of greenland glacial earthquakes. Science, 311, 1756–1758.
  • Elliott, J. G., & Parker, R. S. (2001). Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the buffalo creek watershed, Colorado, USA. Hydrological Processes, 15(2001), 3039–3051.
  • England, G. L., & Ross, A. D. (1962). Reinforced concrete under thermal gradients. Magazine of Concrete Research, 14(40), 5–12.
  • Flint, M. M., Fringer, O., Billington, S. L., Freyberg, D., & Diffenbaugh, N. S. (2017). Historical analysis of hydraulic bridge collapses in the continental United States. Journal of Infrastructure Systems, 23(3), 04017005.
  • Fransson, L. (1988). Thermal ice pressure on structures in ice covers (Doctoral dissertation). Retrieved from http://www.diva-portal.org/smash/get/diva2:990630/FULLTEXT01.pdf
  • Freudenthal, A. M. (1945). The safety of structures. Transactions of the American Society of Civil Engineers, 112, 125–180.
  • Froehlich, D. C. (1989, August). Local scour at bridge abutments. In M. A. Ports (Ed.), Proc. of the 1989 national conf. on hydraulic engineering 13–18. New York, USA: ASCE.
  • GDV (German Association of Insurers). (2011). The climate change challenge, answers and demands of German insurers. Berlin: GDV.
  • Geymayer, H. G. (1972). Effect of temperature on creep of concrete: A literature review. Concrete for Nuclear Reactors, Vol. I, ACI Special Publication SP-34. 565–589. Detroit: American Concrete Institute
  • Gonçalves-Ageitos, M., Barrera-Escoda, A., & Baldasano, J. M. (2015). Modelling wind resources in climate change scenarios in complex terrains. Renewable Energy, 76, 670–678.
  • Gornitz, V., Couch, S., & Hartig, E. K. (2002). Impacts of sea-level rise in the New York City metropolitan area. Global and Planetary Change, 32, 61–88.
  • Gruber, S., Hoelzle, M., & Haeberli, W. (2004). Permafrost thaw and destabilization of alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31, L13504.
  • Gudipudi, P. P., Underwood, B. S., & Zalghout, A. (2017). Impact of climate change on pavement structural performance in the United States. Transportation Research, 57(PartD), 172–184.
  • Hampel, A., Hetzel, R., & Maniatis, G. (2010). Response of faults to climate-driven changes in ice and water volumes on earth’s surface. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(2010), 2501–2517.
  • Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., & Mühll, D. V. (2009). Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews, 92(2009), 117–171.
  • He, S., Yan, S., Deng, Y., & Liu, W. (2018). Impact protection of bridge piers against rockfall. Bulletin of Engineering Geology and the Environment, 2018. doi:10.1007/s10064-018-1250-5
  • Hejnic, J. (1988). Thermal stresses in concrete bridges. IABSE Congress Report, 13, 425–430.
  • Hernandez, H. D., & Gamble, W. L. (1975). Time-dependent prestress losses in pre-tensioned concrete construction (Structural Research Series No. 417). Urbana, Illinois: Civil Engineering Studies, University of Illinois.
  • Hill, D. (2012). The lessons of Katrina, learned and unlearned. Journal of Coastal Research, 28(2), 324–331.
  • Hoeppe, P. (2016). Trends in weather related disasters –consequences for insurers and society. Journal of Weather and Climate Extremes, 11, 70–79.
  • Holper, P., Lucy, S., Nolan, M., Senese, C., & Hennessy, K. (2007). Infrastructure and climate change risk assessment for victoria (Report to the Victorian government). Australia: Commonwealth Scientific and Industrial Research Organisation.
  • Holzer, S. M., Loferski, J. R., & Dillard, D. A. (1989). A review of creep in wood: Concepts relevant to develop long-term behavior predictions for wood structures. Wood and Fiber Science, 21(4), 376–392.
  • Honfi, D. (2013). Design for serviceability – A probabilistic approach (Doctoral dissertation). Retrieved from http://lup.lub.lu.se/record/4216141
  • Hong, J. H., Chiew, Y. M., Lu, J. Y., Lai, J. S., & Lin, Y. B. (2012). Houfeng bridge failure in Taiwan. Journal of Hydraulic Engineering, 138(2), 186–198.
  • Houghton, H. G., & Radford, W. H. (1938). On the measurement of drop size and liquid water content in fogs and clouds. Pap. Phys. Oceanogr. Meteor., 6(4), 31pp.
  • Hudson, L. (2004). Highways asset management case study, UKCIP costing method case study. Oxford, UK: UK Climate Impacts Programme.
  • Hultén, C., Andersson-Sköld, Y., Ottosson, E., Edstam, T., & Johansson, Å. (2007, May). Case studies of landslide risk due to climate change in Sweden. In R. McInnes, J. Jakeways, H. Fairbank, & E. Mathie (Eds.). Landslides and Climate Change: Challenges and Solutions, Proceedings of the International Conference on Landslides and Climate Change (pp. 149–157). London, UK: Taylor & Francis.
  • Imada, Y., Maeda, S., Watanabe, M., Shiogama, H., Mizuta, R., Ishii, M., & Kimoto, M. (2017). Recent enhanced seasonal temperature contrast in Japan from large ensemble high-resolution climate simulations. Atmosphere, 8(57), atmos8030057.
  • IPCC (Intergovernmental Panel on Climate Change). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge & New York: Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2013). Climate Change 2013: The Physical Science Basis- Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge & New York: Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2014). Climate Change 2014-Impacts, Adaptation, and Vulnerability-Part A: Global and Sectoral Aspects-Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge & New York: Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2018). Summary for Policymakers. In: Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.). World Meteorological Organization, Geneva, Switzerland, 32 pp.
  • Jeong, H., Kim, H., Kim, K., & Kim, H. (2017). Prediction of flexible pavement deterioration in relation to climate change using fuzzy logic. Journal of Infrastructure Systems, 23(4), 04017008.
  • Jevrejeva, S., Jackson, L. P., Grinsted, A., Lincke, D., & Marzeion, B. (2018). Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environmental Research Letters, 13(2018), 074014.
  • Kallias, A. N., & Imam, B. (2016). Probabilistic assessment of local scour in bridge piers under changing environmental conditions. Structure and Infrastructure Engineering, 12(9), 1228–1241.
  • Kaplan, S. (1997). The words of risk analysis. Risk Analysis, 17(4), 407–417.
  • Kaplan, S., Haimes, Y. Y., & Garrick, B. J. (2001). Fitting hierarchical holographic modeling into the theory of scenario structuring and a resulting refinement to the quantitative definition of risk. Risk Analysis, 21(5), 807–819.
  • Karl, T. R., Melillo, J. M., & Peterson, T. C. (Eds.). (2009). Global climate change impacts in the United States. Cambridge & New York: Cambridge University Press.
  • Kattell, J., & Eriksson, M. (1998). Bridge scour evaluation: Screening, analysis, & countermeasures. Washington, DC: Forest Service, USDA.
  • Kawai, H., Koshiro, T., Endo, H., Arakawa, O., & Hagihara, Y. (2016). Changes in marine fog in a warmer climate. Atmospheric Science Letters, 17, 548–555.
  • Kean, J. W., Staley, D. M., & Cannon, S. H. (2011). In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. Journal of Geophysical Research, 116, F04019.
  • Kelly, A. J., Sauer, E. K., Christiansen, E. A., Barbour, S. L., & Widger, R. A. (1995). Deformation of the deer creek bridge by an active landslide in clay shale. Canadian Geotechnical Journal, 32, 701–724.
  • Kerr, G. H., DeGaetano, A. T., Stoof, C. R., & Ward, D. (2018). Climate change effects on wildland fire risk in the Northeastern and great lakes states predicted by a downscaled multi-model ensemble. Theoretical and Applied Climatology, 131, 625–639.
  • Klaassen, R. K. W. M. (2015, September). Life expectation of wooden foundations - a non-destructive approach. Paper presented at the international symposium non-destructive testing in civil engineering, Berlin.
  • Kleissl, K., & Georgakis, C. (2010, May). Bridge ice accretion and de- and anti-icing systems: A review. Paper presented at the 7th international cable supported bridge operators’ conference (7th ICSBOC), Zhenjiang, China.
  • Köliö, A., Pakkala, T. A., Lahdensivu, J., & Kiviste, M. (2014). Durability demands related to carbonation induced corrosion for finnish concrete buildings in changing climate. Engineering Structures, 62, 42–52.
  • Komori, D., Rangsiwanichpong, P., Inoue, N., Ono, K., Watanabe, S., & Kazama, S. (2018). Distributed probability of slope failure in Thailand under climate change. Climate Risk Management, 20(2018), 126–137.
  • Kristo, C., Rahardjo, H., & Satyanaga, A. (2017). Effect of variations in rainfall intensity on slope stability in Singapore. International Soil and Water Conservation Research, 5, 258–264.
  • Kumar, P., & Imam, B. (2013). Footprints of air pollution and changing environment on the sustainability of built infrastructure. Science of the Total Environment, 444, 85–101.
  • Kumlai, S., Jitsangiam, P., & Pichayapan, P. (2017). The implications of increasing temperature due to climate change for asphalt concrete performance and pavement design. KSCE Journal of Civil Engineering, 21(4), 1222–1234.
  • Lichtenstein, A. G. (1993). The silver bridge collapse recounted. Journal of Performance of Constructed Facilities, 7(4), 249–261.
  • Lozano, O. M., Salis, M., Ager, A. A., Arca, B., Alcasena, F. J., Monteiro, A. T., … Spano, D. (2017). Assessing climate change impacts on wildfire exposure in Mediterranean areas. Risk Analysis, 37(10), 1898–1916.
  • Mallick, D. V., Tawil, M. M., & Shibani, A. A. (1989). Durability of foundation concrete in an aggressive environment. IABSE Reports, IABSE Symposium (Lisbon): Durability of Structures, 57(1), 243–248.
  • Mallick, R. B., Jacobs, J. M., Miller, B. J., Daniel, J. S., & Kirshen, P. (2018). Understanding the impact of climate change on pavements with CMIP5, system dynamics and simulation. International Journal of Pavement Engineering, 19(8), 697–705.
  • Margreth, S., & Ammann, W. J. (2004). Hazard scenarios for avalanche actions on bridges. Annals of Glaciology, 38, 89–96.
  • Mårtensson, A. (1994). Mechano-sorptive effects in wooden material. Wood Science and Technology, 28, 437–449.
  • Mayer, M. (1926). Die Sicherheit der Bauwerke und ihre Berechnung nach Grenzkrajten instate nach Zulassigen Spanungen [The safety of constructional works and its design according to limit states instead of permissible stresses] (Unpublished doctoral dissertation). Springer Verlag, Berlin. (English and Spanish translations published by ANATOMIC, Madrid, 1975).
  • McGuire, B. (2012). Waking the Giant: How a changing climate triggers earthquakes, tsunamis, and volcanos. Oxford: Oxford University Press.
  • McInnes, K. L., Walsh, K. J. E., Hubbert, G. D., & Beer, T. (2003). Impact of sea-level rise and storm surges on a coastal community. Natural Hazards, 30(2), 187–207.
  • McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O., Ilyas, M., & Madronich, S. (2011). Ozone depletion and climate change: Impacts on UV radiation. Photochemical and Photobiological Sciences, 10, 182–198.
  • Meyer, M. (2008). Design standards for U.S. transportation infrastructure: The implications of climate change. (Special Rep. 290). Washington, DC: Transportation Research Board. http://onlinepubs.trb.org/onlinepubs/sr/sr290Meyer.pdf
  • Meyer, M., & Weigel, B. (2011). Climate change and transportation engineering: Preparing for a sustainable future. Journal of Transportation Engineering, 137(6), 393–403.
  • Mideksa, T. K., & Kallbekken, S. (2010). The impact of climate change on the electricity market: A review. Energy Policy, 38, 3579–3585.
  • Moncmanová, A. (2007). Environmental factors that influence the deterioration of materials. WIT Transactions on State of the Art in Science and Engineering, 28, 1–25.
  • Mondoro, A., Frangopol, D. M., & Liu, L. (2018). Bridge adaptation and management under climate change uncertainties: A review. Natural Hazards Review, 19(1), 04017023.
  • Moody, J. A., & Martin, D. A. (2001). Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA. Hydrological Processes, 15, 2981–2993.
  • Mudd, L., Wang, Y., Letchford, C., & Rosowsky, D. (2014a). Assessing climate change impact on the U.S. East coast hurricane hazard: Temperature, frequency, and track. Natural Hazards Review, 15(3), 04014001.
  • Mudd, L., Wang, Y., Letchford, C., & Rosowsky, D. (2014b). Hurricane wind hazard assessment for a rapidly warming climate scenario. Journal of Wind Engineering and Industrial Aerodynamics, 133, 242–249.
  • Nasser, K. M., & Neville, A. M. (1967). Creep of old concrete at normal and elevated temperatures. ACI JOURNAL Proceedings, 64(2), 97–103.
  • Nath, S. K., Adhikari, M. D., Maiti, S. K., Devaraj, N., Srivastava, N., & Mohapatra, L. D. (2014). Earthquake scenario in West Bengal with emphasis on seismic hazard microzonation of the city of Kolkata, India. Natural Hazards and Earth System Sciences, 14, 2549–2575.
  • Nath, S. K., Srivastava, N., Ghatak, C., Adhikari, M. D., Ghosh, A., & Ray, S. P. S. (2018). Earthquake induced liquefaction hazard, probability and risk assessment in the city of Kolkata, India: Its historical perspective and deterministic scenario. Journal of Seismology, 22, 35–68.
  • Neary, D. G., Gottfried, G. J., & Ffolliott, P. F. (2003, November). Post-wildfire watershed flood responses. In the second international fire ecology and fire management congress. (paper 1B7). Orlando, Florida.
  • Neil, C. R. (1964). River bed scour, a review for bridge engineers. (Contract No. 281). Calgary, Alta., Canada: Research Council of Alberta.
  • Nikitas, N. (2011). Wind-induced dynamic instabilities of flexible bridges (Doctoral dissertation). Retrieved from https://www.researchgate.net/profile/Nikolaos_Nikitas2/publication/292976045_Wind-Induced_Dynamic_Instabilities_of_Flexible_Bridges/links/56b325c108ae56d7b06d637e.pdf
  • Novak, P., Moffat, A., Nalluri, C., & Narayanan, R. (2014). Hydraulic structures. NY: Taylor & Francis.
  • Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis-an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of holocene paleo-earthquakes. Engineering Geology, 44(1), 1–76.
  • Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., Matthew, O. J., & Fagbenle, R. O. (2015). The effect of climate change on solar radiation in Nigeria. Solar Energy, 116, 272–286.
  • Olofsson, M. (2007). Climate change and urban drainage- future precipitation and hydraulic impact (Licentiate thesis). Retrieved from https://www.diva-portal.org/smash/get/diva2:989804/FULLTEXT01.pdf
  • Padgett, J., DesRoches, R., Nielson, B., Yashinsky, M., Kwon, O., Burdette, N., & Tavera, E. (2008). Bridge damage and repair costs from Hurricane Katrina. Journal of Bridge Engineering, 13(1), 6–14.
  • Pakkala, T. A., Köliö, A., Lahdensivu, J., & Pentii, M. (2015). The effect of climate change on freeze-thaw cycles in Nordic climate. In C. Andrade, J. Gulikers, & R. Polder (Eds.), Durab. reinf. concr. from composition to prot. selected papers of the 6th international RILEM PhD workshop (pp. 145–154). Cham: Springer International Publishing.
  • Petermann, T., Bradke, H., Lüllmann, A., Poetzsch, M., & Riehm, U. (2011). What happens during a blackout: Consequences of a prolonged and wide-ranging power outage. Technology assessment studies series – 4. Berlin: Office of Technology Assessment at the German Bundestag.
  • Prowse, T., Alfredsen, K., Beltaos, S., Bonsal, B., Duguay, C., Korhola, A., … Weyhenmeyer, G. (2011). Changing lake and river ice regimes: Trends, effects and implications. In AMAP (Ed.), Snow, water, ice and permafrost in the arctic (SWIPA) (Chapter 6). Oslo: Arctic Monitoring and Assessment Programme (AMAP).
  • Qiao, Y. (2015). Flexible pavements and climate change: Impact of climate change on the performance, maintenance, and life-cycle costs of flexible pavements (Doctoral dissertation). Retrieved from http://eprints.nottingham.ac.uk/29582/1/Thesis%20%28V15%29.pdf
  • Qu, W., Wang, J., Zhang, X., Yang, Z., & Gao, S. (2015). Effect of cold wave on winter visibility over eastern China. Journal of Geophysical Research: Atmospheres, 120, 2394–2406.
  • Raspotnig, C., & Opdahl, A. (2013). Comparing risk identification techniques for safety and security requirements. The Journal of Systems and Software, 86, 1124–1151.
  • Razak, H. A. (1986). Time dependent effects in reinforced concrete sections subjected to flexure (Doctoral dissertation). Retrieved from http://epubs.surrey.ac.uk/1003/1/fulltext.pdf
  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., … Rafaj, P. (2011). RCP 8.5–A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 33–57.
  • Robinson, J. D., Vahedifard, F., & AghaKouchak, A. (2017). Rainfall-triggered slope instabilities under a changing climate: Comparative study using historical and projected precipitation extremes. Canadian Geotechnical Journa, 54, 117–127.
  • Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., … Meinshausen, M. (2016). Paris agreement climate proposals need a boost to keep warming well below 2°C. Nature, 534, 631–639.
  • Rosowsky, D. V. (2018). Assessing climate change impacts on hurricane hazards. In C. Murphy, P. Gardoni, & R. McKim (Eds.), Climate change and its impacts, climate change management (pp. 93–107). Cham: Springer.
  • RSSB (Rail Safety and Standards Board). (2003). Rail safety and standards board, safety implications of weather, climate and climate change: Final report (Report No. AEAT/RAIR/76148/R03/005). Cheshire, UK: Rail Safety and Standards Board.
  • Rupnow, T. (2010). Evaluation of the LA 1 bridge at the morganza flood control structure (Report No. FHWA/LA.10/11-1TA). Baton Rouge, LA: Louisiana Transportation Research Center.
  • Ryan, P. C., Stewart, M. G., Spencer, N., & Li, Y. (2016). Probabilistic analysis of climate change impacts on timber power pole networks. Electrical Power and Energy Systems, 78, 513–523.
  • Salman, A. M., Li, Y., & Bastidas-Arteaga, E. (2017). Maintenance optimization for power distribution systems subjected to hurricane hazard, timber decay and climate change. Reliability Engineering & System Safety, 168, 136–149.
  • Sanders, C. H., & Phillipson, M. C. (2003). UK adaptation strategy and technical measures: The impacts of climate change on buildings. Building Research and Information, 31(3), 210–221.
  • Schwartz, H. G. (2010). Adaptation to the impacts of climate change on transportation. The Bridge, 40(3), 5–13.
  • Seo, D. W., & Caracoglia, L. (2015). Exploring the impact of “climate change” on lifetime replacement costs for long-span bridges prone to torsional flutter. Journal of Wind Engineering and Industrial Aerodynamics, 140, 1–9.
  • Shakesby, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74, 269–307.
  • Shen, H. W., Schneider, V. R., & Karaki, S. (1969). Local scour around bridge piers. Proceedings ASCE, 95(6), 1919–1940.
  • Shupe, T., Lebow, S., & Ring, D. (2008). Causes and control of wood decay, degradation and stain. (Pub.2703). Baton Rouge, LA: Louisiana Cooperative Extension Service.
  • Soares, P. M. M., Lima, D. C. A., Cardoso, R. M., Nascimento, M. L., & Semedo, A. (2017). Western Iberian offshore wind resources. More or Less in a Global Warming Climate? Applied Energy, 203, 72–90.
  • Song, H., & Lee, S. (2017). Effects of wind and tree density on forest fire patterns in a mixed-tree species forest. Forest Science and Technology, 13(1), 9–16.
  • Stambaugh, M. C., Guyette, R. P., Stroh, E. D., Struckhoff, M. A., & Whittier, J. B. (2018). Future southcentral US wildfire probability due to climate change. Climate Change, 147, 617–631.
  • Stein, S. M., & Sedmera, K. (2006). Risk-based management guidelines for scour at bridges with unknown foundations (Rep. No. 107). Washington, DC: NCHRP.
  • Stein, S. M., Young, G. K., Trent, R. E., & Pearson, D. R. (1999). Prioritizing scour vulnerable bridges using risk. .Journal of Infrastructure Systems, 5(3), 95–101.
  • Stewart, M. G., Wang, X., & Nguyen, M. N. (2011). Climate change impact and risks of concrete infrastructure deterioration. Journal of Engineering Structures, 33, 1326–1337.
  • Stoffel, M., & Huggel, C. (2012). Effects of climate change on mass movements in mountain environments. Progress in Physical Geography: Earth and Environment, 36, 421–439.
  • Stoffel, M., Tiranti, D., & Huggel, C. (2014). Climate change impacts on mass movements - case studies from the European Alps. Science of the Total Environment, 493, 1255–1266.
  • Strydom, S., & Savage, M. J. (2017). Potential impacts of climate change on wildfire dynamics in the midlands of KwaZulu-Natal, South Africa. Climate Change, 143, 385–397.
  • Taricska, M. R. (2014). An analysis of recent bridge failures in the United States (2000–2012) (Master’s thesis). Retrieved from https://etd.ohiolink.edu/!etd.send_file?accession=osu1397600086&disposition=inline
  • Titus, J. G., & Richman, C. (2001). Maps of lands vulnerable to sea-level rise: Modeled elevation along the US Atlantic and gulf coasts. Climate Research, 18, 205–228.
  • Toll, D. G., Abedin, Z., Buma, J., Cui, Y., Osman, A. S., & Phoon, K. K. (2012). The impact of changes in the water table and soil moisture on structural stability of buildings and foundation systems: systematic review (CEE10-005 (SR90)) (Technical report-collaboration for environmental evidence). Durham: Durham University Library.
  • Torroja, E., & Paez, A. (1949). La Determinacion del Coeficiente de Securidad en las Distintas Obras. Madrid, Spain: Instituto Tecnico de la Construccion e del Cemento.
  • TRB (Transportation Research Board). (2008). Potential impacts of climate change on U.S. Transportation (Special Report 290). Washington D.C: Committee on Climate Change and U.S. Transportation, Transportation Research Board, National Research Council.
  • Úbeda, B., Di Giacomo, A. S., Neiff, J. J., Loiselle, S. A., Poi, A. S. G., Gálvez, J. Á., … Cózar, A. (2013). Potential effects of climate change on the water level, flora and macro-fauna of a large neotropical wetland. PloS one, 8(7), e67787.
  • UNFCCC (United Nations Framework Convention on Climate Change). (2015). Adoption of the Paris agreement (Report No. FCCC/CP/2015/L.9/Rev.1). Conference of the Parties, twenty-first session. Paris: United Nations Framework Convention on Climate Change. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
  • Usman, M. (2016). A study on the enhancing earthquake frequency in northern Pakistan: Is the climate change responsible? Natural Hazards, 82, 921–931.
  • Van Den Hurk, B., Van Meijgaard, E., De Valk, P., Van Heeringen, K. J., & Gooijer, J. (2015). Analysis of a compounding surge and precipitation event in the Netherlands. Environmental Research Letters, 10, 035001.
  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., … Rose, S. K. (2011). Representative concentration pathways: An overview. Climatic Change, 109, 5–31.
  • Vandamme, M., Zhang, Q., Ulm, F., Roy, R. L., Zuber, B., Gartner, E., & Termkhajornkit, P. (2013, September). Creep properties of cementitious materials from indentation testing: Significance, influence of relative humidity, and analogy between C–S–H and soils. In F. Ulm, H. M. Jennings, & R. Pellenq (Eds.), Proceedings of the ninth international conference on creep, shrinkage, and durability mechanics (CONCREEP-9) 48–61. Virginia: ASCE.
  • Wang, X., Stewart, M. G., & Nguyen, M. N. (2012). Impact of climate change on corrosion and damage to concrete infrastructure in Australia. Climatic Change, 110(3–4), 941–957.
  • Willway, T., Baldachin, L., Reeves, S., Harding, M., McHale, M., & Nunn, M. (2008). The effects of climate change on highway pavements and how to minimize them: Technical report (PPR184). Berkshire, UK: TRL Limited.
  • Woodworth, M. A. (2013). Fire hazard assessment for highway bridges with thermal mechanical modeling (Doctoral dissertation). Retrieved from https://vtechworks.lib.vt.edu/bitstream/handle/10919/23683/Woodworth_MA_D_2013.pdf?sequence=1&isAllowed=y
  • Wu, D., Deng, X., Mao, J., Mao, W., Ye, Y., & Bi, X. (2007). Macro- and microstructures of heavy fogs and visibility in the Dayaoshan expressway. Acta Meteorology Sinica, 21, 342–352.
  • Wu, S. Y., Najjar, R., & Siewert, J. (2009). Potential impacts of sea-level rise on the mid- and upper-Atlantic region of the United States. Climatic Change, 95(1–2), 121–138.
  • Wu, T., Shih, H. J., Li, H. C., Su, Y. F., & Chen, Y. M. (2016). Landslide impact assessment using projection rainfall data from climate change scenario. Terrestrial, Atmospheric and Oceanic Sciences, 27(5), 729–740.
  • Wu, T. H., McKinnell, W. P., III, & Swanston, D. N. (1979). Strength of tree roots and landslides on prince of Wales Island, Alaska. Canadian Geotechnical Journal, 16, 19–33.
  • Wuttrich, R., Wekezer, J., Yazdani, N., & Wilson, C. (2001). Performance evaluation of existing bridge fenders for ship impact. Journal of Performance of Constructed Facilities, 15(1), 17–23.
  • Yilmaz, I., & Bagci, A. (2006). Soil liquefaction susceptibility and hazard mapping in the residential area of Kütahya (Turkey). Environmental Geology, 49, 708–719.
  • Youd, T. L. (1993). Liquefaction-induced damage to bridges. Transportation Research Record, 1411, 35–41.
  • Zevenbergen, L. W., Arneson, L. A., Hunt, J. H., & Miller, A. C. (2012). Hydraulic design of safe bridges (Report No. FHWA-HIF-12-018HDS 7). Fort Collins, CO: Ayres Associates.
  • Zia, P., Preston, H. K., Scott, N. L., & Workman, E. B. (1979). Estimating prestress losses. Concrete International, 1(6), 32–38.