207
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Robustness of Ontario power network under systemic risks

ORCID Icon & ORCID Icon
Pages 252-271 | Received 31 Dec 2017, Accepted 03 Sep 2019, Published online: 02 Oct 2019

References

  • Albert, R., Albert, I., & Nakarado, G. L. (2004). Structural vulnerability of the North American power grid. Physical Review E, 69(2), 025103.
  • Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.
  • Albert, R., Jeong, H., & Barabási, A. L. (2000). Error and attack tolerance of complex networks. nature, 406(6794), 378–382.
  • Anghel, M., Werley, K. A., & Motter, A. E. (2007, January). Stochastic model for power grid dynamics. In 2007 40th Annual Hawaii International Conference on System Sciences (HICS”07) (pp. 113). Waikoloa, Hawaii: IEEE.
  • Atay, F. M., Biyikoglu, T., & Jost, J. (2006). Synchronization of networks with prescribed degree distributions. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(1), 92–98.
  • Atkins, K., Chen, J., Anil Kumar, V. S., & Marathe, A. (2009). The structure of electrical networks: A graph theory based analysis. International Journal of Critical Infrastructures, 5(3), 265–284.
  • Barabási, A. L. (2003). Linked: The new science of networks.
  • Barabási, A. L. (2016). Network science. Cambridge: Cambridge university press.
  • Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439), 509–512.
  • Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P. P., & Neumann, F. (2009). Computing single source shortest paths using single-objective fitness. In Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms (pp. 59–66). Orlando, FL: ACM.
  • Bernstein, A., Bienstock, D., Hay, D., Uzunoglu, M., & Zussman, G. (2012). Sensitivity analysis of the power grid vulnerability to large-scale cascading failures. ACM SIGMETRICS Performance Evaluation Review, 40(3), 33–37.
  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308.
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., … Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752.
  • Callaway, D. S., Newman, M. E., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85(25), 5468.
  • Carreras, B. A., Lynch, V. E., Dobson, I., & Newman, D. E. (2002). Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos: An Interdisciplinary Journal of Nonlinear Science, 12(4), 985–994.
  • Chassin, D. P., & Posse, C. (2005). Evaluating North American electric grid reliability using the Barabási–Albert network model. Physica A: Statistical Mechanics and Its Applications, 355(2–4), 667–677.
  • Chen, T., Liu, X., & Lu, W. (2007). Pinning complex networks by a single controller. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1317–1326.
  • Cohen, R., Erez, K., Ben-Avraham, D., & Havlin, S. (2000). Resilience of the internet to random breakdowns. Physical Review Letters, 85(21), 4626.
  • Cotilla-Sanchez, E., Hines, P. D., Barrows, C., & Blumsack, S. (2012). Comparing the topological and electrical structure of the North American electric power infrastructure. IEEE Systems Journal, 6(4), 616–626.
  • Crucitti, P., Latora, V., & Marchiori, M. (2004). Model for cascading failures in complex networks. Physical Review E, 69(4), 045104.
  • Cupac, V., Lizier, J. T., & Prokopenko, M. (2013). Comparing dynamics of cascading failures between network-centric and power flow models. International Journal of Electrical Power & Energy Systems, 49, 369–379.
  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.
  • Dobson, I., Carreras, B. A., Lynch, V. E., & Newman, D. E. (2007). Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(2), 026103.
  • Dwivedi, A., Yu, X., & Sokolowski, P. (2009). Identifying vulnerable lines in a power network using complex network theory. In Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on (pp. 18–23). Seoul, South Korea: IEEE.
  • Estrada, E., Knight, P. A., & Knight, P. (2015). A first course in network theory. USA: Oxford University Press.
  • FEMA, P. (2012).Seismic performance assessment of buildings, applied technology council and federal emergency management agency. Report No. P-58-1, Washington DC.
  • Guidotti, R., Chmielewski, H., Unnikrishnan, V., Gardoni, P., McAllister, T., & van de Lindt, J. (2016). Modeling the resilience of critical infrastructure: The role of network dependencies. Sustainable and Resilient Infrastructure, 1(3–4), 153–168.
  • Han, P., & Ding, M. (2011). Analysis of cascading failures in small-world power grid. International Journal of Energy Science, 1, 2.
  • Holmgren, Å. J. (2006). Using graph models to analyze the vulnerability of electric power networks. Risk Analysis, 26(4), 955–969.
  • Hu, Y. (2005). Efficient, high-quality force-directed graph drawing. Mathematica Journal, 10(1), 37–71.
  • Kim, C. J., & Obah, O. B. (2007). Vulnerability assessment of power grid using graph topological indices. International Journal of Emerging Electric Power Systems, 8, 6.
  • Kinney, R., Crucitti, P., Albert, R., & Latora, V. (2005). Modeling cascading failures in the North American power grid. The European Physical Journal B-Condensed Matter and Complex Systems, 46(1), 101–107.
  • Mei, S., Zhang, X., & Cao, M. (2011). Power grid complexity. Berlin, Germany: Springer Science & Business Media.
  • Mili, L., Qiu, Q., & Phadke, A. G. (2004). Risk assessment of catastrophic failures in electric power systems. International Journal of Critical Infrastructures, 1(1), 38–63.
  • Moreno, Y., Gómez, J. B., & Pacheco, A. F. (2002). Instability of scale-free networks under node-breaking avalanches. EPL (Europhysics Letters), 58(4), 630.
  • Motter, A. E., & Lai, Y. C. (2002). Cascade-based attacks on complex networks. Physical Review E, 66(6), 065102.
  • Nedic, D. P., Dobson, I., Kirschen, D. S., Carreras, B. A., & Lynch, V. E. (2006). Criticality in a cascading failure blackout model. International Journal of Electrical Power & Energy Systems, 28(9), 627–633.
  • North American Electric Reliability Council (NERC) Steering Group. “Technical analysis of the August 14, 2003, blackout: What happened, why, and what did we learn.” report to the NERC Board of Trustees (2004).
  • Orlin, J. B., Madduri, K., Subramani, K., & Williamson, M. (2010). A faster algorithm for the single source shortest path problem with few distinct positive lengths. Journal of Discrete Algorithms, 8(2), 189–198.
  • Pagani, G. A., & Aiello, M. (2011). Towards decentralization: A topological investigation of the medium and low voltage grids. IEEE Transactions on Smart Grid, 2(3), 538–547.
  • Pahwa, S., Hodges, A., Scoglio, C., & Wood, S. (2010). Topological analysis of the power grid and mitigation strategies against cascading failures. arXiv preprint arXiv:1006.4627.
  • Peng, W., Hu, X., Zhao, F., & Su, J. (2012). A Fast algorithm to find all-pairs shortest paths in complex networks. Procedia Computer Science, 9, 557–566.
  • Pepyne, D. L. (2007). Topology and cascading line outages in power grids. Journal of Systems Science and Systems Engineering, 16(2), 202–221.
  • Potamias, M., Bonchi, F., Castillo, C., & Gionis, A. (2009). Fast shortest path distance estimation in large networks. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 867–876). Hong Kong, China: ACM.
  • Rosas-Casals, M. (2010). Power grids as complex networks: Topology and fragility. In Complexity in Engineering, 2010. COMPENG’10. (pp. 21–26). Rome, Italy: IEEE.
  • Rosas-Casals, M., & Corominas Murtra, B. (2009). Assessing European power grid reliability by means of topological measures. WIT Transactions on Ecology and the Environment, 121, 527–537.
  • Rosas-Casals, M., Valverde, S., & Solé, R. V. (2007). Topological vulnerability of the European power grid under errors and attacks. International Journal of Bifurcation and Chaos, 17(07), 2465–2475.
  • Salem, S., Campidelli, M., El-Dakhakhni, W. W., & Tait, M. J. (2018). Resilience-based design of urban centres: Application to blast risk assessment. Sustainable and Resilient Infrastructure, 3(2), 68–85. doi:10.1080/23789689.2017.1345256
  • Sharma, N., & Gardoni, P. (2018). Modeling the time-varying performance of electrical infrastructure during post disaster recovery using tensors. In P. Gardoni (Ed.), Routledge handbook of sustainable and resilient infrastructure (pp. 263–280). Milton Park, Abingdon: Routledge.
  • Solé, R. V., Rosas-Casals, M., Corominas-Murtra, B., & Valverde, S. (2008). Robustness of the European power grids under intentional attack. Physical Review E, 77(2), 026102.
  • Song, J., Cotilla-Sanchez, E., Ghanavati, G., & Hines, P. D. (2015). Dynamic modeling of cascading failure in power systems. IEEE Transactions on Power Systems, 31(3), 2085–2095.
  • Vanzi, I. (1996). Seismic reliability of electric power networks: Methodology and application. Structural Safety, 18(4), 311–327.
  • Wang, Z., Scaglione, A., & Thomas, R. J. (2010). Electrical centrality measures for electric power grid vulnerability analysis. In Decision and Control (CDC), 2010 49th IEEE Conference on (pp. 5792–5797). Atlanta, Georgia.
  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684), 440–442.
  • Wu, C. W. (2005). Synchronization in networks of nonlinear dynamical systems coupled via a directed graph. Nonlinearity, 18(3), 1057.
  • Yang, Y., Nishikawa, T., & Motter, A. E. (2017). Small vulnerable sets determine large network cascades in power grids. Science, 358(6365), eaan3184.
  • Zhang, Y., Bao, Z., Cao, Y., Li, G., & Chen, G. (2014). Long-term effect of different topology evolutions on blackouts in power grid. International Journal of Electrical Power & Energy Systems, 62, 718–726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.