329
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Storm sewer pipe renewal planning considering deterioration, climate change, and urbanization: a dynamic Bayesian network and GIS framework

ORCID Icon &
Pages 70-85 | Received 23 Aug 2019, Accepted 27 Feb 2020, Published online: 26 Mar 2020

References

  • Abebe, Y., & Tesfamariam, S. (2020). Underground Sewer Networks Renewal Complexity Assessment and Trenchless Technology: A Bayesian Belief Network and GIS Framework. Journal of Pipeline Systems Engineering and Practice, 11(2), 04019058.
  • Baah, K., Dubey, B., Harvey, R., & McBean, E. (2015). A risk-based approach to sanitary sewer pipe asset management. Science of the Total Environment, 505, 1011–1017. doi:10.1016/j.scitotenv.2014.10.040
  • Balekelayi, N., & Tesfamariam, S. (2019). Statistical inference of sewer pipe deterioration using Bayesian geoadditive regression model. Journal of Infrastructure Systems, 25(3), 1–14. doi:10.1061/(ASCE)IS.1943-555X.0000500
  • Barone, G., Frangopol, D. M., & Soliman, M. (2014). Optimization of life-cycle maintenance of deteriorating bridges with respect to expected annual system failure fate and expected cumulative cost. Journal of Structural Engineering, 140(2), 04013043.
  • Barua, S., Gao, X., Pasman, H., & Mannan, M. S. (2016). Bayesian network based dynamic operational risk assessment. Journal of Loss Prevention in the Process Industries, 41(2016), 399–410. doi:10.1016/j.jlp.2015.11.024
  • Brown, R. E., & Willis, H. L. (2006). The economics of aging infrastructure. IEEE Power and Energy Magazine, 4(3), 36–43. doi:10.1109/MPAE.2006.1632452
  • Butler, D., & Davies, J. (2017). Urban drainage. Crc Press.
  • Carriço, N., Covas, D. I. C., Almeida, M., Leitão, J. P., & Alegre, H. (2012). Prioritization of rehabilitation interventions for urban water assets using multiple criteria decision-aid methods. Water Science and Technology, 66(5), 1007–1014. doi:10.2166/wst.2012.274
  • Cockburn, G., & Tesfamariam, S. (2012). Earthquake disaster risk index for Canadian cities using bayesian belief networks. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 6(2), 128–140.
  • Cooper, G. F. (1990). The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42(2–3), 393–405. doi:10.1016/0004-3702(90)90060-D
  • Demissie, G., Tesfamariam, S., & Sadiq, R. (2016). Considering soil parameters in prediction of remaining service life of metallic pipes: Bayesian belief network model. Journal of Pipeline Systems Engineering and Practice, 7(2),04015028.
  • Demissie, G., Tesfamariam, S., & Sadiq, R. (2017). Prediction of pipe failure by considering time-dependent factors: Dynamic Bayesian belief network model. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(4), 04017017. doi:10.1061/AJRUA6.0000920
  • Diab, Y., & Morand, D. (2001). An approach for the choice of rehabilitation techniques of urban sewers. Pipelines 2001: Advances in Pipelines Engineering and Construction, 1–7.
  • Dingman, S. L., & Sharma, K. P. (1997). Statistical development and validation of discharge equations for natural channels. Journal of Hydrology, 199(1–2), 13–35. doi:10.1016/S0022-1694(96)03313-6
  • Environment and Climate Change Canada, and Environment and natural resources. (2017, April 19). Engineering climate datasets. <http://climate.weather.gc.ca/prods_servs/engineering_e.html>
  • Halfawy, M., Dridi, L., & Baker, S. (2007, November). A GIS-based decision support system for optimal renewal planning of sewers. In 13th Annual conference on urban infrastructure (INFRA 2007) (pp. 1–9). Montreal, Que., Canada.
  • Hao, T., Rogers, C. D. F., Metje, N., Chapman, D. N., Muggleton, J. M., Foo, K. Y., Wang, P., Pennock, S. R., Atkins, P. R., Swingler, S. G., Parker, J., Costello, S. B., Burrow, M. P. N., Anspach, J. H., Armitage, R. J., Cohn, A. G., Goddard, K., Lewin, P. L., Orlando, G., Redfern, M. A., Royal, A. C. D., & Saul, A. J. (2012). Condition assessment of the buried utility service infrastructure. Tunnelling and Underground Space Technology, 28, 331–344. doi:10.1016/j.tust.2011.10.011
  • IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC.
  • Jayaram, N., & Srinivasan, K. (2008). Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing. Water Resources Research, 44(1). doi:10.1029/2006WR005316
  • Kabir, G., Balek, N. B. C., & Tesfamariam, S. (2018a). Consequence-based framework for buried infrastructure systems: A Bayesian belief network model. Reliability Engineering and System Safety, 180, 290–301. doi:10.1016/j.ress.2018.07.037
  • Kabir, G., Balek, N. B. C., & Tesfamariam, S. (2018b). Sewer structural condition prediction integrating Bayesian model averaging with logistic regression. Journal of Performance of Constructed Facilities, 32(3), 1–10. doi:10.1061/(ASCE)CF.1943-5509.0001162
  • Kabir, G., Sadiq, R., & Tesfamariam, S. (2014). A review of multi-criteria decision-making methods for infrastructure management. Structure and Infrastructure Engineering, 10(9), 1176–1210. doi:10.1080/15732479.2013.795978
  • Khakzad, N. (2015). Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliability Engineering and System Safety, 138, 263–272. doi:10.1016/j.ress.2015.02.007
  • Khakzad, N., Khan, F., & Amyotte, P. (2012). Dynamic risk analysis using bow-tie approach. Reliability Engineering & System Safety, 104, 36–44. doi:10.1016/j.ress.2012.04.003
  • Kirshen, P., Caputo, L., Vogel, R., Mathisen, P., Rosner, A., & Renaud, T. (2014). Adapting urban infrastructure to climate change: A drainage case study. Journal of Water Resources Planning and Management, 141(4), 1–11.
  • López, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe A case in Morelia city, Mexico. Landscape and Urban Planning, 55(5), 271–285. doi:10.1016/S0169-2046(01)00160-8
  • Luque, J., & Straub, D. (2019). Risk-based optimal inspection strategies for structural systems using dynamic Bayesian networks. Structural Safety, 76(June 2017), 68–80. doi:10.1016/j.strusafe.2018.08.002
  • Marzouk, M., & Omar, M. (2013). Multiobjective optimisation algorithm for sewer network rehabilitation. Structure and Infrastructure Engineering, 9(11), 1094–1102. doi:10.1080/15732479.2012.666254
  • Micevski, T., Kuczera, G., & Coombes, P. (2002). Markov model for storm water pipe deterioration. Journal of Infrastructure Systems, 8(2), 49–56. doi:10.1061/(ASCE)1076-0342(2002)8:2(49)
  • Mugume, S. N., Gomez, D. E., Fu, G., Farmani, R., & Butler, D. (2015). A global analysis approach for investigating structural resilience in urban drainage systems. Water Research, 81, 15–26. doi:10.1016/j.watres.2015.05.030
  • Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learning. Berkeley: University of California.
  • Najafi, M., & Kulandaivel, G. (2005). Pipeline condition prediction using neural network models. Pipeline Division Specialty Conference 2005 (pp. 767–781). Houston, Texas, USA.
  • Nanos, M. G., & Filion, Y. R. (2016). Risk-based performance assessment of stormwater drainage networks under climate change: a case study in the City of Kingston. In World environmental and water resources congress (pp. 73–81). May 22–26, 2016. West Palm Beach, Florida.
  • NASSCO. (2018, December 22). Pipeline assessment and certification program | NASSCO. <https://www.nassco.org/pipeline-assessment-and-certification-program>
  • Ochoa-Rodríguez, S. (2013). Urban pluvial flood modelling current theory and practice. 2017, February 15. <http://www.raingain.eu/sites/default/files/wp3_review_document.pdf>
  • PCIC. (2013). Statistically downscaled climate scenarios. 2018, April 1. https://www.pacificclimate.org/data/statistically-downscaled-climate-scenarios
  • Rajani, B., & Tesfamariam, S. (2007). Estimating time to failure of ageing cast iron water mains under uncertainties. ICE Water Management Journal, 160(2), 83–88.
  • Simonovic, S. P., Schardong, A., Sandink, D., & Srivastav, R. (2016). A web-based tool for the development of intensity duration frequency curves under changing climate. Environmental Modelling and Software, 81, 136–153. doi:10.1016/j.envsoft.2016.03.016
  • Špačková, O., & Straub, D. (2013). Dynamic Bayesian network for probabilistic modeling of tunnel excavation processes. Computer-Aided Civil and Infrastructure Engineering, 28(1), 1–21. doi:10.1111/j.1467-8667.2012.00759.x
  • St. Clair, A. M., & Sinha, S. (2012). State-of-the-technology review on water pipe condition, deterioration and failure rate prediction models!. Urban Water Journal, 9(2), 85–112. doi:10.1080/1573062X.2011.644566
  • Stefanov, W. L., Ramsey, M. S., & Christensen, P. R. (2001). Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment, 77(2), 173–185. doi:10.1016/S0034-4257(01)00204-8
  • Tagherouit, W. B., Bennis, S., & Bengassem, J. (2011). A fuzzy expert system for prioritizing rehabilitation of sewer networks. Computer-Aided Civil and Infrastructure Engineering, 26(2), 146–152. doi:10.1111/mice.2011.26.issue-2
  • Tee, K. F., Khan, L. R., Chen, H. P., & Alani, A. M. (2014). Reliability based life cycle cost optimization for underground pipeline networks. Tunnelling and Underground Space Technology, 43, 32–40. doi:10.1016/j.tust.2014.04.007
  • Thomsen, N., Binning, P., McKnight, U., Tuxen, N., Bjerg, P., & Troldborg, M. (2016). A bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites. Journal of Contaminant Hydrology, 188, 12–28. doi:10.1016/j.jconhyd.2016.02.003
  • Vladeanu, G. J., & Matthews, J. C. (2019). Consequence-of-failure model for risk-based asset management of wastewater pipes using AHP. Journal of Pipeline Systems Engineering and Practice, 10(2), 04019005. doi:10.1061/(ASCE)PS.1949-1204.0000370
  • Wang, X., Liu, T., & Yang, W. (2012). Development of a robust runoff-prediction model by fusing the rational equation and a modified SCS-CN method. Hydrological Sciences Journal, 57(6), 1118–1140. doi:10.1080/02626667.2012.701305
  • Wang, Y., & Vassileva, J. (2003). Bayesian network-based trust model. Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003) (pp. 372–378). October 13-17, 2003. Halifax, NS, Canada.
  • Water Environment Research Foundation. (2013). SIMPLE - Failure modes and assessment techniques. 2018, December 21. <http://simple.werf.org/Books/Contents/The-10-Steps-to-Asset-Management/Assess-Condition,-Failure-Modes/Condition-Assessment-Protocol/Failure-Modes-and-Assessment-Techniques>
  • Wu, S., Zhang, L., Zheng, W., Liu, Y., & Lunteigen, M. A. (2016). A DBN-based risk assessment model for prediction and diagnosis of offshore drilling incidents. Journal of Natural Gas Science and Engineering, 34, 139–158. doi:10.1016/j.jngse.2016.06.054
  • Wu, X., Liu, H., Zhang, L., Skibniewski, M. J., Deng, Q., & Teng, J. (2015). A dynamic Bayesian network based approach to safety decision support in tunnel construction. Reliability Engineering and System Safety, 134, 157–168. doi:10.1016/j.ress.2014.10.021
  • Yan, J., & Vairavamoorthy, K. (2003). Fuzzy approach for pipe condition assessment. Pipeline Engineering and Construction International Conference 2003, (pp. 466–476). July 13-16, 2003. Baltimore, Maryland, United States.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.