1,627
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Investigations of accelerated methods for determination of chloride threshold values for reinforcement corrosion in concrete

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 197-208 | Received 22 Jun 2020, Accepted 11 Mar 2021, Published online: 01 Apr 2021

References

  • Alonso, M. C., & Sanchez, M. (2009). Analysis of the variability of chloride threshold values in the literature. Materials and Corrosion, 60, 631–637. doi:10.1002/maco.200905296
  • Andrade, C., & Rebolledo, N. (2012). Accelerated evaluation of corrosion inhibition by means of the integral corrosion test. In M. Alexander, H.-D. Beushausen, F. Dehn, & P. Moyo (Eds.), ICCRRR - concrete repair, rehabilitation and retrofitting III, pp. 132–133. Cape Town: Taylor & Francis Group.
  • Angst, U., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2009a). Critical chloride content in reinforced concrete - A review. Cement and Concrete Research, 39, 1122–1138. doi:10.1016/j.cemconres.2009.08.006
  • Angst, U., Vennesland, Ø., & Myrdal, R. (2009b). Diffusion potentials as source of error in electrochemical measurements in concrete. Materials and Structures, 42, 365–375. doi:10.1617/s11527-008-9387-5
  • Angst, U., Wagner, M., Elsener, B., Leemann, A., & Van Nygaard, P. (2016). Schlussbericht ASTRA AGB 2012/010: Methode zur Bestimmung des kritischen Chloridgehalts an bestehenden Stahlbetonbauwerken. ASTRA.
  • Angst, U. M. (2019). Predicting the time to corrosion initiation in reinforced concrete structures exposed to chlorides. Cement and Concrete Research, 115, 559–567. doi:10.1016/j.cemconres.2018.08.007
  • Angst, U. M., Boschmann, C., Wagner, M., & Elsener, B. (2017a). Experimental protocol to determine the chloride threshold value for corrosion in samples taken from reinforced concrete structures. J Vis. Exp, 126.
  • Angst, U. M., & Elsener, B. (2017). The size effect in corrosion greatly influences the predicted life span of concrete infrastructures. Science Advances, 3.
  • Angst, U. M., Geiker, M. R., Alonso, M. C., Polder, R., Isgor, O. B., Elsener, B., Wong, H., Michel, A., Hornbostel, K., Gehlen, C., François, R., Sanchez, M., Criado, M., Sørensen, H., Hansson, C., Pillai, R., Mundra, S., Gulikers, J., Raupach, M., Pacheco, J., & Sagüés, A. (2019). The effect of the steel-concrete interface on chloride-induced corrosion initiation in concrete – A critical review. Materials and Structures, 52.
  • Angst, U. M., Geiker, M. R., Michel, A., Gehlen, C., Wong, H., Isgor, O. B., Elsener, B., Hansson, C. M., François, R., Hornbostel, K., Polder, R., Alonso, M. C., Sanchez, M., Correia, M. J., Criado, M., Sagüés, A., & Buenfeld, N. (2017b). The steel–concrete interface. Materials and Structures, 50.
  • Arup, H. (1993). Determination of chloride threshold values (in Danish). Service Life of Marine Concrete Structures (in Swedish). Cementa AB.
  • Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. (2013). Corrosion of steel in concrete - Prevention, diagnosis, repair. Weinheim: Wiley-VCH.
  • Boschmann Käthler, C., Angst, U. M., Aguilar Sanchez, A. M., & Elsener, B. (2019a). A novel approach to systematically collect critical chloride contents in concrete in an open access data base. Data in Brief, 27.
  • Boschmann Käthler, C., Angst, U. M., Aguilar Sanchez, A. M., & Elsener, B. (2019b). A systematic data collection on chloride-induced steel corrosion in concrete reveals the mechanism of corrosion initiation and improves service life modelling. Corrosion Science, 157, 331–336. doi:10.1016/j.corsci.2019.06.008
  • Breit, W. (2001). Critical corrosion inducing chloride content - State of the art and new investigation results. Betontechnische Berichte 1998-2000. Düsseldorf, Germany.
  • British Cement Association. (1997). Development of an holistic approach to ensure the durability of new concrete construction. Crowthorne, UK: British Cement Association.
  • Cao, Y., Gehlen, C., Angst, U., Wang, L., Wang, Z. D., & Yao, Y. (2019). Critical chloride content in reinforced concrete - an updated review considering Chinese experience. Cement and Concrete Research, 117, 58–68. doi:10.1016/j.cemconres.2018.11.020
  • Castellote, M., Andrade, C., & Alonso, C. (2002). Accelerated simultaneous determination of the chloride depassivation threshold and of the non-stationary diffusion coefficient values. Corrosion Science, 44, 2409–2424. doi:10.1016/S0010-938X(02)00060-4
  • Chu, H., Wang, T., Guo, M.-Z., Zhu, Z., Jiang, L., Pan, C., & Liu, T. (2019). Effect of stray current on stability of bound chlorides in chloride and sulfate coexistence environment. Construction and Building Materials, 194, 247–256. doi:10.1016/j.conbuildmat.2018.11.010
  • Elsener, B., & Angst, U. (2007). Mechanism of electrochemical chloride removal. Corrosion Science, 49, 4504–4522. doi:10.1016/j.corsci.2007.05.019
  • fib. (2006). Model code for service life design. Lausanne: International Federation for Structural Concrete (fib).
  • fib - task group 5.8. (2011). Condition control and assessment of reinforced concrete structures: Exposed to corrosive environments (carbonation/chlorides). Lausanne: Fédération Internationale du Béton fib/International Federation for Structural Concrete.
  • Glass, G. K., & Buenfeld, N. R. (1997). The presentation of the chloride threshold level for corrosion of steel in concrete. Corrosion Science, 39(5), 1001–1013. doi:10.1016/S0010-938X(97)00009-7
  • Glass, G. K., Reddy, B., & Buenfeld, N. R. (2000). The participation of bound chloride in passive film breakdown on steel in concrete. Corrosion Science, 42, 2013–2021. doi:10.1016/S0010-938X(00)00040-8
  • Kayyali, O. A., & Haque, M. N. (1995). The Cl-/OH- ratio in chloride-contaminated concrete - a most important criterion. Magazine of Concrete Research, 47(172), 235–242. doi:10.1680/macr.1995.47.172.235
  • Koch, G. (2017). Cost of corrosion. In A.M. El-Sherik (Ed.), Trends in oil and gas corrosion research and technologies, pp. 3–30. Boston: Woodhead Publishing.
  • Koch, G. H. (2002). Corrosion cost and preventive strategies in the United States. Springfield: Turner-Fairbank Highway Research Center.
  • Nilsson, L. O., Sandberg, P., Poulsen, E., Luping, T., Andersen, A., & Frederiksen, J. M. (1997) A system for estimation of chloride ingress into concrete. HETEK Report.
  • NT Build 208 (1996) Hardened concrete: Chloride content by Volhard titration. edition 3. Nordtest, http://www.nordtest.info/.
  • Page, C. L., Lambert, P., & Vassie, P. R. W. (1992). Investigations of reinforcement corrosion. 1. The pore electrolyte phase in chloride-contaminated concrete. Materials and Structures, 24, 243–252. doi:10.1007/BF02472078
  • Polder, R. B., Van Put, M., & Peelen, W. H. A. (2017). Accelerated testing for chloride threshold of reinforcing steel in concrete. fib Symposium - High Tech Concrete: Where technology and engineering meet! Maastricht, The Netherlands.
  • Poulsen, S. L., & Sørensen, H. E. (2019). Testing of new accelerated method for determination of chloride threshold values for corrosion initiation in reinforced concrete. Proc. Int. Conf. on Sustainable Materials, Systems and Structures (SMSS2019) - Novel Methods for Characterization of Materials and Structures. Rovinj (HR).
  • Sandberg, P., & Pettersson, K. (1997). Chloride penetration into concrete. (L. O. Nilsson & J. P. Ollivier, Eds.). France: RILEM Publications.
  • Sandberg, P., & Sørensen, H. (1999). Factors affecting the chloride thresholds for uncracked reinforced concrete exposed in a marine environment. Part II: Laboratory and field exposure of corrosion cells. Corros Eng Sci Technol, 1, 99–109.
  • SIA (2007). SIA EN 14629 - Produkte und Systeme für den Schutz und die Instandsetzung von Betontragwerken - Prüfverfahren - Bestimmung des Chloridgehalts von Festbeton. SIA. Zürich, SIA.
  • SIA (2011). SIA 269/2: Erhaltung von Tragwerken - Betonbau. Zürich, Schweizerischer Ingenieur- und Architektenverein.
  • Sørensen, H. E., Poulsen, S. L., & Jönsson, U. (2016). Chloride threshold values from concrete blocks exposed at Rødbyhavn field exposure site. Fib Symposium 2016 on Performance-Based Approaches for Concrete Structures. Cape Town.
  • Tang, L., Frederiksen, J. M., Angst, U., Polder, R., Alonso, M. C., Elsener, B., Hooton, R. D., & Pacheco, J. (2018). Experiences from RILEM TC 235-CTC in recommending a test method for chloride threshold values in concrete. RILEM Technical Letters, 3, 25–31. doi:10.21809/rilemtechlett.2018.55
  • Tang, L., Nilsson, L. O., & Basheer, M. P. A. (2012). Resistance of concrete to chloride ingress: Testing and modelling. Boca Raton: CRC Press.
  • Vassie, P. (1984). Reinforcement corrosion and the durability of concrete bridges. Proceedings of the Institution of Civil Engineers. London.
  • Yang, Z., Polder, R., Mol, J. M. C., & Andrade, C. (2017). The effect of two types of modified Mg-Al hydrotalcites on reinforcement corrosion in cement mortar. Cement and Concrete Research, 100, 186–202. doi:10.1016/j.cemconres.2017.06.004
  • Yilmaz, D., & Angst, U. (2020). Korrosionsbedingte Kosten an Ingenieurbauwerken im Schweizer Straßennetz. Beton- und Stahlbetonbau, 115, 448–458. doi:10.1002/best.202000004