95
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Reliability of chloride testing results in cementitious systems containing admixed chlorides

ORCID Icon & ORCID Icon
Pages 209-221 | Received 31 Oct 2020, Accepted 08 Apr 2021, Published online: 26 Apr 2021

References

  • Abd Elmoaty, M. (2018). Four-years carbonation and chloride induced steel corrosion of sulfate-contaminated aggregates concrete. Construction and Building Materials, 163, 539–556. doi:10.1016/j.conbuildmat.2017.12.128
  • Ahmed, A. A., & Trejo, D. (2020). Assessing standard tests for admixtured chlorides in calcium aluminate and calcium sulfoaluminate cement systems. ACI Materials Journal, 117(1), 71–84. doi:10.14359/51720290
  • Alapati, P., and Kurtis, K. E. 2018. “Carbonation in Alternative Cementitious Materials: Implications on Durability and Mechanical Properties.” Sixth International Conference on Durability of Concrete Structures. University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom. ICC02:111–119
  • Andac, M., & Glasser, F. (1999). Pore solution composition of calcium sulfoaluminate cement. Advances in Cement Research, 11(1), 23–26. doi:10.1680/adcr.1999.11.1.23
  • Angst, U., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2009). Critical chloride content in reinforced concrete—A review. Cement and Concrete Research, 39(12), 1122–1138. doi:10.1016/j.cemconres.2009.08.006
  • Ann, K. Y., & Cho, C.-G. (2014). Corrosion resistance of calcium aluminate cement concrete exposed to a chloride environment. Materials, 7(2), 887–898. doi:10.3390/ma7020887
  • ASTM C1152. (2012). Standard test method for acid-soluble chloride in mortar and concrete. Philadelphia, PA: ASTM International.
  • ASTM C1218. (2015). Standard test method for water-soluble chloride in mortar and concrete. West Conshohocken, PA: ASTM International.
  • ASTM C1556–11a. (2016). Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. Philadelphia, PA: ASTM International.
  • ASTM C305. (2020). Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. Philadelphia, PA: ASTM International.
  • ASTM D1193 – 06. (2018). Standard specification for reagent water. Philadelphia, PA: ASTM International.
  • ASTM E104. (2020). Standard practice for maintaining constant relative humidity by means of aqueous solutions. Philadelphia, PA: ASTM International.
  • Baroghel-Bouny, V., Wang, X., Thiery, M., Saillio, M., & Barberon, F. (2012). Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis. Cement and Concrete Research, 42(9), 1207–1224. doi:10.1016/j.cemconres.2012.05.008
  • Bentivegna, A. F. (2012). Multi-scale characterization, implementation, and monitoring of calcium aluminate cement based-systems. ( Doctoral dissertation). The University of Texas at Austin, 346.
  • Blenkinsop, R. D., Currell, B. R., Midgley, H. G., & Parsonage, J. R. (1985). The carbonation of high alumina cement, Part I. Cement and Concrete Research, 15(20), 276–284. doi:10.1016/0008-8846(85)90039-0
  • Canonico, F., Buzzi, L., & Schäffel, P. (2012). Durability properties of concrete based on industrial calcium sulfoaluminate cement. In International congress on the durability of concrete ( pp. A2–2). Trondheim, Norway.
  • Chen, B., Laucks, M. L., & Davis, E. J. (2004). Carbon dioxide uptake by hydrated lime aerosol particles. Aerosol Science and Technology, 38(6), 588–597. doi:10.1080/02786820490479897
  • Chen, J. J., Thomas, J. J., & Jennings, H. M. (2006). Decalcification shrinkage of cement paste. Cement and Concrete Research, 36(5), 801–809. doi:10.1016/j.cemconres.2005.11.003
  • De Weerdt, K., Colombo, A., Coppola, L., Justnes, H., & Geiker, M. R. (2015). Impact of the associated cation on chloride binding of Portland cement paste. Cement and Concrete Research, 68, 196–202. doi:10.1016/j.cemconres.2014.01.027
  • DorMohammadi, H., Pang, Q., Murkute, P., Árnadóttir, L., & Isgor, O. B. (2019). Investigation of chloride-induced depassivation of iron in alkaline media by reactive force field molecular dynamics. Npj Materials Degradation, 3(1), 1–11. doi:10.1038/s41529-019-0081-6
  • Dyer, T. (2017). Influence of cement type on resistance to attack from two carboxylic acids. Cement and Concrete Composites, 83, 20–35. doi:10.1016/j.cemconcomp.2017.07.004
  • Ekolu, S. O., Thomas, M. D. A., & Hooton, R. D. (2006). Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism. Cement and Concrete Research, 36(4), 688–696. doi:10.1016/j.cemconres.2005.11.020
  • Florea, M. V. A., & Brouwers, H. J. H. (2012). Chloride binding related to hydration products: Part I: Ordinary Portland Cement. Cement and Concrete Research, 42(2), 282–290. doi:10.1016/j.cemconres.2011.09.016
  • Galan, I., Glasser, F., Baza, D., & Andrade, C. (2015). Assessment of the protective effect of carbonation on portlandite crystals. Cement and Concrete Research, 74, 68–77. doi:10.1016/j.cemconres.2015.04.001
  • Geng, J., Easterbrook, D., Liu, Q. F., & Li, L. Y. (2016). Effect of carbonation on release of bound chlorides in chloride-contaminated concrete. Magazine of Concrete Research, 68(7), 353–363. doi:10.1680/jmacr.15.00234
  • Glasser, F. P., Kindness, A., & Stronach, S. A. (1999). Stability and solubility relationships in AFm phases: Part I. Chloride, sulfate and hydroxide. Cement and Concrete Research, 29(6), 861–866. doi:10.1016/S0008-8846(99)00055-1
  • Goni, S., & Guerrero, A. (2003). Accelerated carbonation of Friedel’s salt in calcium aluminate cement paste. Cement and Concrete Research, 33(1), 21–26. doi:10.1016/S0008-8846(02)00910-9
  • Hidalgo, A., Domingo, C., Garcia, C., Petit, S., Andrade, C., & Alonso, C. (2008). Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation. Journal of Materials Science, 43(9), 3101–3111. doi:10.1007/s10853-008-2521-5
  • Hirao, H., Yamada, K., Takahashi, H., & Zibara, H. (2005). Chloride binding of cement estimated by binding isotherms of hydrates. Journal of Advanced Concrete Technology, 3(1), 77–84. doi:10.3151/jact.3.77
  • Huet, B., L’Hostis, V., Miserque, F., & Idrissi, H. (2005). Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution. Electrochimica Acta, 51(1), 172–180. doi:10.1016/j.electacta.2005.04.014
  • Ideker, J. H., Scrivener, K. L., Fryda, H., & Touzo, B. (2019). Lea’s chemistry of cement and concrete. In (5th ed., pp. 537–584). Kidlington, Oxford, UK: Butterworth-Heinemann.
  • Justnes, H. (1998). A review of chloride binding in cementitious systems. Nordic Concrete Research-Publications, 21, 48–63.
  • Larsen, C. K. (1998). Chloride binding in concrete, Effect of surrounding environment and concrete composition ( Dr. ing. Thesis). NTNU, Trondheim, 95, 337–0.
  • Liu, J. Z., Ba, M. F., Du, Y. G., He, Z. M., & Chen, J. B. (2016a). Effects of chloride ions on carbonation rate of hardened cement paste by X-ray CT techniques. Construction and Building Materials, 122, 619–627. doi:10.1016/j.conbuildmat.2016.06.101
  • Liu, W., Cui, H., Dong, Z., Xing, F., Zhang, H., & Lo, T. Y. (2016b). Carbonation of concrete made with dredged marine sand and its effect on chloride binding. Construction and Building Materials, 120, 1–9. doi:10.1016/j.conbuildmat.2016.05.011
  • Moorehead, D. (1986). Cementation by the carbonation of hydrated lime. Cement and Concrete Research, 16(5), 700–708. doi:10.1016/0008-8846(86)90044-X
  • Neville, A. (1995). Chloride attack of reinforced concrete: An overview. Materials and Structures, 28(2), 63. doi:10.1007/BF02473172
  • Ngala, V., & Page, C. (1997). Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cement and Concrete Research, 27(7), 995–1007. doi:10.1016/S0008-8846(97)00102-6
  • Nishikawa, T., Suzuki, K., & Ito, S. (1992). Decomposition of synthesized etrringite by carbonation. Cement and Concrete Research, 22(1), 6–14. doi:10.1016/0008-8846(92)90130-N
  • Pu, Q., Yao, Y., Wang, L., Shi, X., Luo, J., & Xie, Y. (2017). The investigation of pH threshold value on the corrosion of steel reinforcement in concrete. Computers and Concrete, 19(3), 257–262. doi:10.12989/cac.2017.19.3.257
  • Qiao, C., Suraneni, P., Ying, T. N. W., Choudhary, A., & Weiss, J. (2019). Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23° C. Cement and Concrete Composites, 97, 43–53. doi:10.1016/j.cemconcomp.2018.12.011
  • Qiu, Q. (2020). A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Construction and Building Materials, 247, 118503. doi:10.1016/j.conbuildmat.2020.118503
  • Rilem, T. C. CPC 18 Measurement of hardened concrete carbonation depth, 1988. RILEM Recommendations for the Testing and Use of Constructions Materials. e(1994). 56–58.
  • Robl, T. L., Graham, U. M., & Taulbee, D. N. (1996). The effect of carbonation reactions on the long term stability of products made from dry FGD materials. Preprints of Papers, American Chemical Society, Division of Fuel Chemistry. 41(CONF-960376).
  • Ross, S. M. (2020). Introduction to probability and statistics for engineers and scientists. (Sixth ed.). Academic press. Chapter 10. p. 306. p. 453. https://doi.org/10.1016/C2018–0–02166–0
  • Sanjuán, M. A. (1997). Formation of chloroaluminates in calcium aluminate cements cured at high temperatures and exposed to chloride solutions. Journal of Materials Science, 32(23), 6207–6213. doi:10.1023/A:1018624824702
  • Shen, X. H., Jiang, W. Q., Hou, D., Hu, Z., Yang, J., & Liu, Q. F. (2019a). Numerical study of carbonation and its effect on chloride binding in concrete. Cement and Concrete Composites, 104, 103402. doi:10.1016/j.cemconcomp.2019.103402
  • Shen, X.-H., Liu, Q.-F., Hu, Z., Jiang, W.-Q., Lin, X., Hou, D., & Hao, P. (2019b). Combine ingress of chloride and carbonation in marine-exposed concrete under unsaturated environment: A numerical study. Ocean Engineering, 189, 106350. doi:10.1016/j.oceaneng.2019.106350
  • Shi, Z., Geiker, M. R., Lothenbach, B., De Weerdt, K., Garzón, S. F., Enemark-Rasmussen, K., & Skibsted, J. (2017). Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cement and Concrete Composites, 78, 73–83. doi:10.1016/j.cemconcomp.2017.01.002
  • Suraneni, P., Azad, V. J., Isgor, B. O., & Weiss, W. J. (2016a). Calcium oxychloride formation in pastes containing supplementary cementitious materials: Thoughts on the role of cement and supplementary cementitious materials reactivity. RILEM Technical Letters, 1, 24–30. doi:10.21809/rilemtechlett.2016.7
  • Suraneni, P., Salgado, N., Carolan, H., Li, C., Azad, V., Isgor, B., Ideker, J., & Weiss, J. (2016b). Mitigation of deicer damage in concrete pavements caused by calcium oxychloride formation–use of ground lightweight aggregates. Proc Int RILEM Conf on Materials, Systems and Structures in Civil Engineering, Denmark.
  • Suryavanshi, A. K., Scantlebury, J. D., & Lyon, S. B. (1996). Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cement and Concrete Research, 26(5), 717–727. doi:10.1016/S0008-8846(96)85009-5
  • Trejo, D., & Ahmed, A. A. (2019). Adopting Auto-Titration to Assess Chlorides in Concrete. ACI Materials Journal, 116(3), 43–52. doi:10.14359/51715580
  • Trejo, D., Shakouri, M., Vaddey, N. P., & Isgor, O. B. (2018). Development of empirical models for chloride binding in cementitious systems containing admixed chlorides. Construction and Building Materials, 189, 157–169. doi:10.1016/j.conbuildmat.2018.08.197
  • Trejo, D., Vaddey, N. P., & Shakouri, M. (2019). Factors influencing chloride test results of cementitious systems. ACI Materials Journal, 116(1), 135–145. doi:10.14359/51712240
  • Tsui-Chang, M., Qiao, C., Montanari, L., Suraneni, P., & Weiss, W. J. (2019). Chloride binding of cementitious materials exposed to sodium chloride using x-ray fluorescence. ACI Materials Journal, 116(5), 173–179. doi:10.14359/51716996
  • Villain, G., Thiery, M., & Platret, G. (2007). Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cement and Concrete Research, 37(8), 1182–1192. doi:10.1016/j.cemconres.2007.04.015
  • Wang, Y., Nanukuttan, S., Bai, Y., & Basheer, P. (2017). Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes. Construction and Building Materials, 140, 173–183. doi:10.1016/j.conbuildmat.2017.02.121
  • Zhang, J., Shi, C., & Zhang, Z. (2019). Chloride binding of alkali-activated slag/fly ash cements. Construction and Building Materials, 226, 21–31. doi:10.1016/j.conbuildmat.2019.07.281
  • Ioannou, S., Paine, K., Reig, L., Quillin, K., (2015). Performance characteristics of concrete based on a ternary calcium sulfoaluminate–anhydrite–fly ash cement, Cem and Concr Comp. 55:196–204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.