146
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of chloride cations on pore solution chloride and critical chloride threshold of carbon steel rebar

ORCID Icon, , &
Pages 185-196 | Received 06 Aug 2020, Accepted 08 Apr 2021, Published online: 10 Jun 2021

References

  • Alonso, C., Andrade, C., Castellote, M., & Castro, P. (2000). Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cement and Concrete Research, 30(7), 1047–1055. doi:10.1016/S0008-8846(00)00265-9
  • Angst, U., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2009). Critical chloride content in reinforced concrete - A review. Cement and Concrete Research, 39(12), 1122–1138. doi:10.1016/j.cemconres.2009.08.006
  • Arya, C., Buenfeld, N. R., & Newman, J. B. (1990). Factors influence chloride-binding in concrete. Cement and Concrete Research, 20(2), 291–300. doi:10.1016/0008-8846(90)90083-A
  • De Weerdt, K., Colombo, A., Coppola, L., Justnes, H., & Geiker, M. R. (2015). Impact of the associated cation on chloride binding of Portland cement paste. Cement and Concrete Research, 68, 196–202. doi:10.1016/j.cemconres.2014.01.027
  • Dodson, V. (1990). Concrete Admixtures. New York: Van Nostrand Reinhold. https://doi.org/10.16309/j.cnki.1007-1776.2003.03.004
  • Elsener, B., Addari, D., Coray, S., & Rossi, A. (2011). Stainless steel reinforcing bars - Reason for their high pitting corrosion resistance. Materials and Corrosion, 62(2), 111–119. doi:10.1002/maco.201005826
  • Elsener, B., Zimmermann, L., Flückiger, D., Bürchler, D., & Böhni, H. (1997).Chloride penetration - non destructive determination of the free chloride content in mortar and concrete. In Proc. RILEM Int. Workshop “Chloride penetration into concrete.”(pp. 17-26). RILEM: Paris, France.
  • Ghods, P., Isgor, O. B., McRae, G. A., & Gu, G. P. (2010). Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions. Corrosion Science, 52(5), 1649–1659. doi:10.1016/j.corsci.2010.02.016
  • Glass, G. K., & Buenfeld, N. R. (1997). The presentation of the chloride threshold level for corrosion of steel in concrete. Corrosion Science, 39, 1001–1013. doi:10.1016/S0010-938X(97)00009-7
  • Hope, B. B., & Ip, A. K. C. (1987). Chloride corrosion threshold in concrete. ACI Materials Journal, 84(4), 306–314.
  • Hunt, M. J., & Hansson, C. M. M. (2015). The influence of the cations in anti-icing brines on the corrosion of reinforcing steel in synthetic concrete pore solution. Corrosion, 71(6), 749–757. doi:10.5006/1328
  • Juenger, M. C. G., Monteiro, P. J. M., Gartner, E. M., & Denbeaux, G. P. (2005). A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration. Cement and Concrete Research, 35(1), 19–25. doi:10.1016/j.cemconres.2004.05.016
  • Julio-Betancourt, G. A., & Hooton, R. D. (2009). Calcium and Magnesium Chloride attack on cement based materials: Formation, stability, and effects of oxychlorides. In 2nd International RILEM Workshop on Concrete Durability and Service Life Planning (pp. 432–439).
  • Kadowaki, M., Muto, I., Sugawara, Y., Doi, T., Kawano, K., & Hara, N. (2018). Improving pitting corrosion resistance at inclusions and ductility of a martensitic medium-carbon steel: Effectiveness of short-time tempering. Journal of the Electrochemical Society, 165(11), C711–C721. doi:10.1149/2.0071811jes
  • Kishar, E. A., Ahmed, D. A., Mohammed, M. R., & Noury, R. (2013). Effect of calcium chloride on the hydration characteristics of ground clay bricks cement pastes. Beni-Suef University Journal of Basic and Applied Sciences, 2(1), 20–30. doi:10.1016/j.bjbas.2013.09.003
  • Kristufek, L. (2020). The effect of de-icing salts on the chemistry of the pore solution in cement pastes and their influence on rebar corrosion. Thesis from Department of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario. doi: 10.1017/CBO9781107415324.004
  • Lambert, P., Page, C. L., & Vassie, P. R. W. (1991). Investigations of reinforcement corrosion. 2. electrochemical monitoring of steel in chloride-contaminated concrete. Materials and Structures, 24, 351–358. doi:10.1007/BF02472068
  • Mammoliti, L. T., Brown, L. C., Hansson, C. M., & Hope, B. B. (1996). The influence of surface finish of reinforcing steel and pH of test solution on chloride threshold. Cement and Concrete Research, 26(4), 545–550. doi:10.1016/0008-8846(96)00018-X
  • Morris, W., Vico, A., & Vazquez, M. (2004). Chloride induced corrosion of reinforcing steel evaluated by concrete resistivity measurements. Electrochimica Acta, 49, 4447–4453. doi:10.1016/j.electacta.2004.05.001
  • Morris, W., Vico, A., Vazquez, M., & De Sanchez, S. R. (2002). Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements. Corrosion Science, 44, 81–99. doi:10.1016/S0010-938X(01)00033-6
  • Niejenhuis, C. B., Van, Ogunsanya, I. G., Hansson, C. M., Van Niejenhuis, C. B., Ogunsanya, I. G., & Hansson, C. M. (2020). Analysis of pore solution of different cements with and without admixed chlorides. ACI Materials Journal, 117(3), 21–28. doi:10.14359/51724590
  • Niejenhuis, V., Bradley, C., & Hansson, C. M. (2019). Detrimental effects of anti-icing brines on concrete durability: A comparative study based on continuous immersion over a 5-year period. Concrete International, 41(11), 30–34.
  • Ogunsanya, I. G., & Hansson, C. M. (2018). Detection of the critical chloride threshold of carbon steel rebar in synthetic concrete pore solutions. RILEM Technical Letters, 3, 75–83. doi:10.21809/rilemtechlett.2018.70
  • Ogunsanya, I. G., & Hansson, C. M. (2019). Influence of chloride and sulphate anions on the electronic and electrochemical properties of passive films formed on steel reinforcing bars. Materialia, 8(September), 100491. doi:10.1016/j.mtla.2019.100491
  • Ogunsanya, I. G., & Hansson, C. M. (2020). The critical chloride concentration of austenitic and duplex stainless steel reinforcing bars. Metallurgical and Materials Transactions A, 51(9), 4685–4694. doi:10.1007/s11661-020-05874-2
  • Page, C. L., Lambert, P., & Vassie, P. R. W. (1991). Investigations of reinforcement corrosion. 1. The pore electrolyte phase in chloride-contaminated concrete. Materials and Structures, 24, 243–252. doi:10.1007/BF02472078
  • Peterson, K., Julio-Betancourt, G., Sutter, L., Hooton, R. D., & Johnston, D. (2013). Observations of chloride ingress and calcium oxychloride formation in laboratory concrete and mortar at 5°C. Cement and Concrete Research, 45(1), 79–90. doi:10.1016/j.cemconres.2013.01.001
  • Pettersson, K. (1992). Corrosion threshold value and corrosion rate in reinforced concrete. CBI Report 2:92, Swedish Cement and Concrete Research Institute, 257–266.
  • Pettersson, K. (1994). Chloride threshold value and the corrosion rate in reinforced concrete. Cement and Concrete Research, 20, 461–470.
  • Poursaee, A. (2010). Corrosion of steel bars in saturated Ca(OH)2 and concrete pore solution. Concrete Research Letters, 1(3), 90–97.
  • Poursaee, A., & Hansson, C. M. (2009). Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cement and Concrete Research, 39(5), 391–400. doi:10.1016/j.cemconres.2009.01.015
  • Sandberg, P. (1999). Studies of chloride binding in concrete exposed in a marine environment. Cement and Concrete Research, 29(4), 473–477. doi:10.1016/S0008-8846(98)00191-4
  • Schiessl, P., & Raupach, M. (1990). Influence of concrete composition and microclimate on the critical chloride content in concrete. In Proc. 3rd Int. Symp. “Corrosion of Reinforcment in Concrete”, Elsevier Applied Science (pp. 49–58). Wishaw, UK.
  • Suryavanshi, A. K. K., Scantlebury, J. D. D., & Lyon, S. B. B. (1996). Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cement and Concrete Research, 26(5), 717–727. doi:10.1016/S0008-8846(96)85009-5
  • Tang, L., Frederiksen, J. M., Angst, U. M., Polder, R., Alonso, M. C., Elsener, B., … Hooton, D. (2018). Experiences from RILEM TC 235-CTC in recommending a test method for chloride threshold values in concrete. RILEM Technical Letters, 3, 25. doi:10.21809/rilemtechlett.2018.55
  • Thomas, M. D. A. (1996). Field studies of fly ash concrete structures containing reactive aggregates. Magazine of Concrete Research, 48(177), 265–279. doi:10.1680/macr.1996.48.177.265
  • Thomas, M. D. A., & Bamforth, P. B. (1999). Modelling chloride diffusion in concrete effect of fly ash and slag. Cement and Concrete Research, 29(4), 487–495. doi:10.1016/S0008-8846(98)00192-6
  • Treadaway, K. W. J., Cox, R. N., & Brown, B. L. (1989). Durability of corrosion resisting steels in concrete. Proceedings of Institution of Civil Engineers, 86(2), 305–331.
  • Tritthart, J. (1989). Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding. Cement and Concrete Research, 19, 683–691. doi:10.1016/0008-8846(89)90039-2
  • Tritthart, J. (2009). Pore solution of concrete: The equilibrium of bound and free chloride. Materials and Corrosion, 60(8), 579–585. doi:10.1002/maco.200905277
  • Zibara, H. (2001). Binding of external chlorides by cement pastes. Department of Building Materials, PhD Thesis, University of Toronto, Canada, 1–320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.