350
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Physics-based repair rate curves for segmented pipelines subject to seismic excitations

ORCID Icon &
Pages 121-141 | Received 10 May 2021, Accepted 26 Oct 2021, Published online: 30 Jan 2022

References

  • Ahammed, M., & Melchers, R. E. (1997). Probabilistic analysis of underground pipelines subject to combined stresses and corrosion. Engineering Structures, 19(12), 988–994. doi:10.1016/S0141-0296(97)00043-6
  • American Lifeline Alliance. (2001). Seismic fragility formulations for water systems, Part I-guideline. ALA: ASCE.
  • American Water Works Association, A. C151 (1987). Ductile-Iron Pipe. Centrifugally Cast in Metal Molds or Sand-Lined Molds, for Water or Other Liquids. AWWA
  • Brown, R. P., & Butler, T. (2000). Natural ageing of rubber: Changes in physical properties over 40 years. Shawbury, Shropshire, UK: iSmithers Rapra Publishing.
  • Caleyo, F., Gonzalez, J. L., & Hallen, J. M. (2002). A study on the reliability assessment methodology for pipelines with active corrosion defects. International Journal of Pressure Vessels and Piping, 79(1), 77–86. doi:10.1016/S0308-0161(01)00124-7
  • Caleyo, F., Velázquez, J. C., Valor, A., & Hallen, J. M. (2009). Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study. Corrosion Science, 51(9), 1925–1934. doi:10.1016/j.corsci.2009.05.019
  • Choe, D., Gardoni, P., Rosowsky, D., & Haukaas, T. (2008). Probabilistic capacity models and fragility estimates for corroding reinforced concrete columns. Reliability Engineering and System Safety, 93(3), 383–393. doi:10.1016/j.ress.2006.12.015
  • Choe, D., Gardoni, P., Rosowsky, D., & Haukaas, T. (2009). Seismic fragility estimates for reinforced concrete bridges subject to corrosion. Structural Safety, 31(4), 275–283. doi:10.1016/j.strusafe.2008.10.001
  • Christodoulou, S. E., & Fragiadakis, M. (2015). Vulnerability assessment of water distribution networks considering performance data. Journal of Infrastructure Systems, 21(2), 4014040. doi:10.1061/(ASCE)IS.1943-555X.0000224
  • Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods (Vol. 178). New York: Wiley.
  • Elhmadi, K. (1989). Seismic wave propagation effects on straight-jointed buried pipelines. Ph.D. Thesis. Rensselaer Polytechnic Institute.
  • Elhmadi, K., & O’Rourke, M. J. (1990). Seismic damage to segmented buried pipelines. Earthquake Engineering & Structural Dynamics, 19(4), 529–539. doi:10.1002/eqe.4290190405
  • Federal Emergency Management Agency. (2004). NEHRP recommended provisions for seismic regulations for new buildings and other structures. Washington, DC: FEMA.
  • Gardoni, P. (2017). Risk and reliability analysis: Theory and applications. Cham: Springer.
  • Gardoni, P. (2019). Handbook of Sustainable and Resilient Infrastructure. Abingdon, Oxon, New York, NY, USA: Routledge.
  • Gardoni, P., Der Kiureghian, A., & Mosalam, K. M. (2002). Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, 128(10), 1024–1038. doi:10.1061/(ASCE)0733-9399(2002)128:10(1024)
  • Gardoni, P., Mosalam, K. M., & Der Kiureghian, A. (2003). Probabilistic seismic demand models and fragility estimates for RC bridges. Journal of Earthquake Engineering, 7(spec01), 79–106. doi:10.1080/13632460309350474
  • Guidotti, R. (2012). Near-field earthquake ground motion rotations and relevance on civil engineering structures. Ph.D.Thesis. Politecnico di Milano.
  • Guidotti, R., Gardoni, P., & Rosenheim, N. (2017). Integration of physical infrastructure and social systems in communities’ reliability and resilience analysis. Reliability Engineering & System Safety, 185, 476–492. doi:10.1016/j.ress.2019.01.008
  • Hooke, R. (1678). De Potentia Restitutiva. John Martyn: London.
  • Hwang, H. H., Lin, H., & Shinozuka, M. (1998). Seismic performance assessment of water delivery systems. Journal of Infrastructure Systems, 4(3), 118–125. doi:10.1061/(ASCE)1076-0342(1998)4:3(118)
  • Iannacone, L., Andreini, M., Gardoni, P., & Sassu, M. (2021a). Probabilistic models and fragility estimates for reinforced masonry walls subject to in-plane horizontal forces. Journal of Structural Engineering, 147(6). doi:10.1061/(ASCE)ST.1943-541X.0003006
  • Iannacone, L., & Gardoni, P. (2018) Physics-based repair rates for pipelines subject to seismic excitations. Proceedings of 16th European Conference on Earthquake Engineering, Thessaloniki, Greece.
  • Iannacone, L., & Gardoni, P. (2019) Stochastic differential equations for the deterioration processes of engineering systems. Proceedings of the 13th Int ernational Conference on Applications of Statistics and Prob ability in Civil Engineering, May 26-30, Seoul, South Korea.
  • Iannacone, L., & Gardoni, P. (2021). Stochastic differential equations formulation for the deterioration of engineering systems and calibration based on structural health monitoring data. Probabilistic Engineering Mechanics (In preparation)
  • Iannacone, L., Sharma, N., Tabandeh, A., & Gardoni, P. (2021b). Modeling time-varying reliability and resilience of deteriorating infrastructure. Reliability Engineering and System Safety (submitted)
  • Isoyama, R., Ishida, E., Yune, K., & Shirozu, T. (2000). Seismic damage estimation procedure for water supply pipelines. Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand. Society for Earthquake Engineering, Auckland, New Zealand, 8.
  • Jeon, S. S., & O’Rourke, T. D. (2005). Northridge earthquake effects on pipelines and residential buildings. Bulletin of the Seismological Society of America, 95(1), 294–318. doi:10.1785/0120040020
  • Jia, G., & Gardoni, P. (2018a). State-dependent stochastic models: A general stochastic framework for modeling deteriorating engineering systems considering multiple deterioration processes and their interactions. Structural Safety, 72, 99–110. doi:10.1016/j.strusafe.2018.01.001
  • Jia, G., & Gardoni, P. (2018b). Simulation-based approach for estimation of stochastic performances of deteriorating engineering systems. Probabilistic Engineering Mechanics, 52, 28–39. doi:10.1016/j.probengmech.2018.03.001
  • Kleiner Y., Rajani, B. (2001). Comprehensive review of structural deterioration of water mains: statistical models. Urban water 3(3), 131-150.
  • Kumar, R., Cline, D., & Gardoni, P. (2015). A stochastic framework to model deterioration in engineering systems. Structural Safety, 53, 36–43. doi:10.1016/j.strusafe.2014.12.001
  • Kumar, R., & Gardoni, P. (2014). Effect of seismic degradation on the fragility of reinforced concrete bridges. Engineering Structures, 79, 267–275. doi:10.1016/j.engstruct.2014.08.019
  • Kumar, R., Gardoni, P., & Sanchez-Silva, M. (2009). Effect of cumulative seismic damage and corrosion on life-cycle cost of reinforced concrete bridges. Earthquake Engineering & Structural Dynamics, 38(7), 887–905. doi:10.1002/eqe.873
  • Leis, B. N., & Stephens, D. R. (1997). An alternative approach to assess the integrity of corroded line pipe-part I: Current status. Seventh International Offshore and Polar Engineering Conference 25-30 May, Honolulu, Hawaii, USA.
  • Mair, W. M. (1968). Fracture criteria for cast iron under biaxial stresses. Journal of Strain Analysis, 3(4), 254–263. doi:10.1243/03093247V034254
  • Makhoul, N., Navarro, C., Lee, J. S., & Gueguen, P. (2020). A comparative study of buried pipeline fragilities using the seismic damage to the Byblos wastewater network. International Journal of Disaster Risk Reduction, 51, 101775. doi:10.1016/j.ijdrr.2020.101775
  • Mavridis, G., & Pitilakis, K. (1996). Axial and transverse seismic analysis of buried pipelines. Proceedings of the 11th World Conference on Earthquake engineering, Elsevier, Acapulco, Mexico, 81–88.
  • Mazumder, R. K., Fan, X., Salman, A. M., Li, Y., & Yu, X. (2020). Framework for seismic damage and renewal cost analysis of buried water pipelines. Journal of Pipeline Systems Engineering and Practice, 11(4), 4020038. doi:10.1061/(ASCE)PS.1949-1204.0000487
  • Mazzieri, I., Stupazzini, M., Guidotti, R., & Smerzini, C. (2013). SPEED: SPectral elements in elastodynamics with discontinuous Galerkin: A non‐conforming approach for 3D multi‐scale problems. International Journal for Numerical Methods in Engineering, 95(12), 991–1010. doi:10.1002/nme.4532
  • Mises, R. V. (1913). Mechanics of solid bodies in the plastically-deformable state. Göttin Nachr Math Phys, 1, 582–592.
  • Naval Facilities Engineering Command. (1986). Soil mechanics design manual. Naval Facilities Engineering Command Publications, Version 7.01. NAVFAC.
  • Newmark, N. M. (1967). Problems in wave propagation in soil and rock. Selected Papers By Nathan M. Newmark: Civil Engineering Classics, ASCE: 703–722.
  • O’Rourke, M., & Deyoe, E. (2004). Seismic damage to segmented buried pipe. Earthquake Spectra, 20(4), 1167–1183. doi:10.1193/1.1808143
  • O’Rourke, M. J., & Elhmadi, K. (1988). Analysis of continuous buried pipelines for seismic wave effects. Earthquake Engineering & Structural Dynamics, 16(6), 917–929. doi:10.1002/eqe.4290160611
  • O’Rourke, T. D., Jeon, S. S., Toprak, S., Cubrinovski, M., Hughes, M., van Ballegooy, S., & Bouziou, D. (2014). Earthquake response of underground pipeline networks in Christchurch, NZ. Earthquake Spectra, 30(1), 183–204. doi:10.1193/030413EQS062M
  • Paolucci, R., Griffini, S., & Mariani, S. (2010). Simplified modelling of continuous buried pipelines subject to earthquake fault rupture. Earthquakes and Structures, 1(3), 253–267. doi:10.12989/eas.2010.1.3.253
  • Pineda, O., & Najafi, M. (2010). Seismic damage estimation for buried pipelines: Challenges after three decades of progress. Journal of Pipeline Systems Engineering and Practice, 1(1), 19–24. doi:10.1061/(ASCE)PS.1949-1204.0000042
  • Pineda, O., & Ordaz, M. (2007). A new seismic intensity parameter to estimate damage in buried pipelines due to seismic wave propagation. Journal of Earthquake Engineering, 11(5), 773–786. doi:10.1080/13632460701242781
  • Pineda, O., & Ordaz, M. (2010). Seismic fragility formulation for segmented buried pipeline systems including the impact of differential ground subsidence. Journal of Pipeline Systems Engineering and Practice, 1(4), 141–146. doi:10.1061/(ASCE)PS.1949-1204.0000061
  • Pineda, O., & Ordaz, M. (2012). Seismic damage estimation in buried pipelines due to future earthquakes–the case of the Mexico City water system. Earthquake-Resistant Structures-Design, Assessment and Rehabilitation. InTech.
  • Porter, K., Terentieff, S., McMullin, R., & Irias, X. (2017). Water supply damage, recovery, and lifeline interaction in an earthquake sequence. Congress on Technical Advancement 2017, 10–13 September, Duluth, Minnesota, USA.
  • Rajani, B., Kleiner, Y. (2001). Comprehensive review of structuraldeterioration of water mains: Physically Pbased models, Urban water, 3(3), 151–164.
  • Rajani, B., & Makar, J. (2000). A methodology to estimate remaining service life of grey cast iron water mains. Canadian Journal of Civil Engineering, 27(6), 1259–1272. doi:10.1139/l00-073
  • Rajani, B., & Tesfamariam, S. (2004). Uncoupled axial, flexural, and circumferential pipe soil interaction analyses of partially supported jointed water mains. Canadian Geotechnical Journal, 41(6), 997–1010. doi:10.1139/t04-048
  • Rajani, B., & Tesfamariam, S. (2007). Estimating time to failure of cast-iron water mains. Proceedings of the Institution of Civil Engineers-Water Management, 160, 2,83–88. 10.1680/wama.2007.160.2.83 Thomas Telford Ltd.
  • Rajani, B., Zhan, C., & Kuraoka, S. (1996). Pipe soil interaction analysis of jointed water mains. Canadian Geotechnical Journal, 33(3), 393–404. doi:10.1139/t96-061
  • Rao, C. R., & Toutenburg, H. (1997). Linear models, least squares and alternatives. New York: Springer.
  • Ryan, T. P. (2007). Modern engineering statistics. Hoboken, N.J: Wiley-Interscience.
  • Sadiq, R., Rajani, B., & Kleiner, Y. (2004). Probabilistic risk analysis of corrosion associated failures in cast iron water mains. Reliability Engineering & System Safety, 86(1), 1–10. doi:10.1016/j.ress.2003.12.007
  • Saskatchewan Environment (Sask) (2004). Water Pipeline Design Guidelines. EPB 276, April 2004, Saskatchewan, Canada.
  • Sharma, N., Tabandeh, A., & Gardoni, P. (2018). Resilience analysis: A mathematical formulation to model resilience of engineering systems. Sustainable and Resilient Infrastructure, 3(2), 49–67. doi:10.1080/23789689.2017.1345257
  • Sharma, N., Tabandeh, A., & Gardoni, P. (2020). Regional resilience analysis: A multi-scale approach to optimize the recovery of interdependent infrastructure. Computer-Aided Civil and Infrastructure Engineering, 35(12), 1315–1330. doi:10.1111/mice.12606
  • Singhal, A. C. (1984). Behavior of jointed ductile iron pipelines. Journal of Transportation Engineering, 110(2), 235–250. doi:10.1061/(ASCE)0733-947X(1984)110:2(235)
  • Stupazzini, M., Allmann, A., Infantino, M., Paolucci, R., Smerzini, C., Mazzieri, I., Guidotti, R., & Gardoni, P. (2019). Footprint based PSHA: The case of Christchurch, New Zealand. Proceedings of 2019 Pacific Conference on Earthquake Engineering (PCEE), April 4-6, Auckland, New Zealand
  • U.S. Army Corps of Engineers (USACE) (1990). Engineering and design- settlement analyses, manual, No. 1110-1-1904, Washington, DC.
  • Vazouras, P., Karamanos, S. A., & Dakoulas, P. (2010). Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dynamics and Earthquake Engineering, 30(11), 1361–1376. doi:10.1016/j.soildyn.2010.06.011
  • Vořechovský, M., & Novák, D. (2009). Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics, 24(3), 452–462. doi:10.1016/j.probengmech.2009.01.004
  • Wijaya, H., Rajeev, P., & Gad, E. (2019). Effect of seismic and soil parameter uncertainties on seismic damage of buried segmented pipeline. Transportation Geotechnics, 21, 100274. doi:10.1016/j.trgeo.2019.100274
  • Wu, Y., Meng, B., Wang, L., & Qin, G. (2020). Seismic vulnerability analysis of buried polyethylene pipeline based on finite element method. International Journal of Pressure Vessels and Piping, 187, 104167. doi:10.1016/j.ijpvp.2020.104167
  • Zhang, S., Zhou, W., Al-Amin, M., Kariyawasam, S., & Wang, H. (2012). Time-dependent corrosion growth modeling using multiple ILI data. International Pipeline Conference, 45158, 693–702.
  • Zhou, W., Hong, H. P., & Zhang, S. (2012). Impact of dependent stochastic defect growth on system reliability of corroding pipelines. International Journal of Pressure Vessels and Piping, 96, 68–77. doi:10.1016/j.ijpvp.2012.06.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.