218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the correlations between different chloride transport parameters and their role in service life estimation

ORCID Icon &
Pages 240-255 | Received 18 Sep 2020, Accepted 30 Jun 2022, Published online: 19 Jul 2022

References

  • AASHTO-PP84. (2017). Standard practice for developing performance engineered concrete pavement mixtures. American Association of State Highway and Transportation Officials, 1(April), 1–36.
  • AASHTO-T358. (2015). Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Association of State Highway and Transportation Officials. 1–8. https://store.transportation.org/Item/PublicationDetail?ID=4633. doi:10.1520/C1202-12.2
  • ACI 201. (2008). 201.2R-08 guide to durable concrete. Concrete, 0–54.
  • Al-Alaily, H. S., & Hassan, A. A. A. (2016). Time-dependence of chloride diffusion for concrete containing metakaolin. Journal of Building Engineering, 7, 159–169. doi:10.1016/j.jobe.2016.06.003
  • Alexander, M., Ballim, Y., & Santhanam, M. (2005). Performance specifications for concrete using the durability index approach. Indian Concrete Journal, 79(12), 41–46.
  • Alexander, M. G., & Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures – Review and critique. Cement and Concrete Research, 122(February), 17–29. doi:10.1016/j.cemconres.2019.04.018
  • Andrade, C., Castellote, M., & D’Andrea, R. (2011). Measurement of ageing effect on chloride diffusion coefficients in cementitious matrices. Journal of Nuclear Materials, 412(1), 209–216. doi:10.1016/j.jnucmat.2010.12.236
  • Angst, U., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2009). Critical chloride content in reinforced concrete - A review. Cement and Concrete Research, 39(12), 1122–1138. doi:10.1016/j.cemconres.2009.08.006
  • ASTM C1202. (2012). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. American Society for Testing and Materials, C, 1–8. doi:10.1520/C1202-12.2
  • ASTM C1556-11a. (2011). Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. ASTM International, 1–7.
  • ASTM-C1760. (2012). ASTM standard C1760 - standard test method for bulk electrical conductivity of hardened concrete. ASTM International, 6, 6. doi:10.1520/C1760-12.2
  • ASTMC1876. (2019). ASTM standard C1876 - standard test method for bulk electrical resistivity or bulk conductivity of hardened concrete. ASTM International, 1–5. doi:10.1520/C1760-12.2
  • Avet, F., & Scrivener, K. (2020). Influence of pH on the chloride binding capacity of Limestone Calcined Clay Cements (LC3). Cement and Concrete Research, 131(March), 106031. doi:10.1016/j.cemconres.2020.106031
  • Beushausen, H., Torrent, R., & Alexander, M. G. (2019). Performance-based approaches for concrete durability: State of the art and future research needs. Cement and Concrete Research, 119(July 2018), 11–20. doi:10.1016/j.cemconres.2019.01.003
  • Boddy, A., Hooton, R. D., & Gruber, K. A. (2001). Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin. Cement and Concrete Research, 31(5), 759–765. doi:10.1016/S0008-8846(01)00492-6
  • Burris, L. E., & Riding, K. A. (2014). Diffusivity of binary and ternary concrete mixture blends. ACI Materials Journal, 111, 373–382. doi:10.14359/51686826
  • CEB-FIB bulletin No. 34. (2006). MC-SLD:2006. Model Code for Service Life Design (CEB-FIB bulletin No. 34).
  • Crank, J. (1979). The mathematics of Diffusion. Oxford University Press. doi:10.1016/0306-4549(77)90072-X
  • Dhandapani, Y. (2020). Composite Cements with Limestone Additions: Microstructure and Transport Properties (Ph.D. Thesis), IIT Madras.
  • Dhandapani, Y., Santhanam, M., Gettu, R., & Pillai, R. G. (2020). Perspectives on blended cementitious systems with calcined clay- limestone combination for sustainable low carbon cement transition. Indian Concrete Journal, 94(Feb), 25–38.
  • Dhandapani, Y., & Santhanam, M. (2020a). Influence of calcined clay-limestone ratio on properties of concrete with Limestone Calcined Clay Cement (LC3). Calcined Clays for Sustainable Concrete: Proceedings of 3nd International Conference on Calcined Clays for Sustainable Concrete, New Delhi.
  • Dhandapani, Y., & Santhanam, M. (2020b). Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination. Cement and Concrete Research, 129, 105959. doi:10.1016/j.cemconres.2019.105959
  • Dhanya, B. S., & Santhanam, M. (2017). Performance evaluation of rapid chloride permeability test in concretes with supplementary cementitious materials. Materials and Structures, 50(1), 67. doi:10.1617/s11527-016-0940-3
  • Duracrete. (1999). Probabilistic performance based durability design of concrete structures, 86.
  • DuraCrete (2000). General guidelines for durability design and redesign. The European Union-Brite Euram III, Project No. BE95-1347, Probabilistic Performance -Based Durability Design of Concrete Structures, 1–138.
  • Fattah, A. A. E., Al-Duais, I., Riding, K., Thomas, M., Al-Dulaijan, S., & Al-Zahrani, M. (2020). Field validation of concrete transport property measurement methods. Materials, 13(5). doi:10.3390/ma13051166
  • Ibrahim, M. A., & Issa, M. A. (2016). Time-dependent diffusion modeling of concrete with cement containing limestone and inorganic process additions. ACI Materials Journal, 113(6), 837–848. doi:10.14359/51689243
  • ICI-TC/08. (2019). Handbook on concrete durability, 1–99.
  • Ipavec, A., Vuk, T., Gabrovšek, R., & Kaučič, V. (2013). Chloride binding into hydrated blended cements: The influence of limestone and alkalinity. Cement and Concrete Research, 48, 74–85. doi:10.1016/j.cemconres.2013.02.010
  • Jafari, V., & Burkan, A. O. (2017). Modeling chloride ingress in concrete with thermodynamically calculated chemical binding. International Journal of Advances in Engineering Sciences and Applied Mathematics, 1–21. doi:10.1007/s12572-017-0189-2
  • Justnes, H., Kim, M. O., Ng, S., & Qian, X. (2016). Methodology of calculating required chloride diffusion coefficient for intended service life as function of concrete cover in reinforced marine structures. Cement and Concrete Composites, 73, 316–323. doi:10.1016/j.cemconcomp.2016.08.006
  • Kearsley, E. P., & Joyce, A. (2014). Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs. Journal of the South African Institution of Civil Engineering, 56(2), 21–29.
  • Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P., & Payer, J. H. (2002). Corrosion costs and preventive strategies in the United States. NACE International, NACE, 10. https://rosap.ntl.bts.gov/view/dot/40697
  • Koch, G., Varney, J., Thompson, N., Moghissi, O., Gould, M., & Payer, J. (2016). International measures of prevention, application, and economics of corrosion technologies study. NACE International, 216, 1–3.
  • Life-365. (2012). Life-365 User Manual. http://www.life-365.org/
  • Lollini, F., Redaelli, E., & Bertolini, L. (2016). Investigation on the effect of supplementary cementitious materials on the critical chloride threshold of steel in concrete. Materials and Structures, 49(10), 4147–4165. doi:10.1617/s11527-015-0778-0
  • Machner, A., Zajac, M., Ben Haha, M., Kjellsen, K. O., Geiker, M. R., De Weerdt, K., Ben, M., Kjellsen, K. O., & Geiker, M. R. (2018). Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin. Cement and Concrete Research, 107(March), 163–181. doi:10.1016/j.cemconres.2018.02.002
  • Mangat, P. S. S., & Molloy, B. T. T. (1994). Predicting of long term chloride concentration in concrete. Materials and Structures, 27(6), 338–346. doi:10.1007/BF02473426
  • Markeset, G., & Skjølsvold, O. (2010). Time dependent chloride diffusion coefficient - field studies of concrete exposed to marine environment in Norway. 2nd International Symposium on Service Life Design for Infrastructures, 4-6 Oct, 2010, Delft, The Netherland, 83–90.
  • Nokken, M., Boddy, A., Hooton, R. D., & Thomas, M. D. A. (2006). Time dependent diffusion in concrete-three laboratory studies. Cement and Concrete Research, 36(1), 200–207. doi:10.1016/j.cemconres.2004.03.030
  • Nord Build 443. (1995). NT build 443 concrete, hardened : accelerated chloride penetration. NordTest, 1–5.
  • NT Build. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. NordTest, 492, 1–8.
  • Park, J. I., Lee, K. M., Kwon, S. O., Bae, S. H., Jung, S. H., & Yoo, S. W. (2016). Diffusion decay coefficient for chloride ions of concrete containing mineral admixtures. Advances in Materials Science and Engineering, 2016. doi:10.1155/2016/2042918
  • Perez, M. B., Zibara, H., Hooton, R. D., & Thomas, M. D. A. (2000). A study of the effect of chloride binding on service life predictions. Cement and Concrete Research, 30(5), 1215–1223. doi:10.1016/S0008-8846(00)00339-2
  • Pillai, R. G., Gettu, R., Santhanam, M., Rengaraju, S., Dhandapani, Y., Rathnarajan, S., & Basavaraj, A. S. (2019). Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cement and Concrete Research, 118(July), 111–119. doi:10.1016/j.cemconres.2018.11.019
  • Poshnath, A. (2019). Investigation of Time Dependency in Chloride Transport Parameters for Service Life Estimation of Blended Cementitious Systems (Master’s Thesis), IIT Madras.
  • SANS-3001-CO3-3. (2015). SANS 3001-CO3-3 Civil engineering test methods. Part CO3-3: Concrete durability index testing - Chloride conductivity test.
  • Spragg, R., Qiao, C., Barrett, T., Weiss, J., Lafayette, W., & Beijing, T. (2016). Assessing a concrete's resistance to chloride ion ingress using the formation factor. In Poursaee, A., (Ed), Corrosion of Steel in Concrete Structures, Woodhead Publishing, 2016, Pages 211-238, ISBN 9781782423812,https://doi.org/10.1016/B978-1-78242-381-2.00011-0
  • Stanish, K., & Thomas, M. (2003). The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients. Cement and Concrete Research, 33(1), 55–62. doi:10.1016/S0008-8846(02)00925-0
  • Suryanto, B., Kim, J., McCarter, W. J., Starrs, G., & Aitken, M. W. (2020). Assessing the performance and transport properties of concrete using electrical property measurements. Journal of Advanced Concrete Technology, 18(7), 437–455. doi:10.3151/jact.18.437
  • Suryavanshi, A. K., Scantlebury, J. D., & Lyon, S. B. (1996). Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cement and Concrete Research, 26(5), 717–727. doi:10.1016/S0008-8846(96)85009-5
  • Thomas, M. D. A., & Bamforth, P. B. (1999). Modelling chloride diffusion in concrete effect of fly ash and slag. Cement and Concrete Research, 29(4), 487–495. doi:10.1016/S0008-8846(98)00192-6
  • Tritthart, J. (1989). Chloride binding in cement I. Investigations to determine the composition of porewater in hardened cement. Cement and Concrete Research, 19(4), 586–594. doi:10.1016/0008-8846(89)90010-0
  • Van den Heede, P., De Keersmaecker, M., Elia, A., Adriaens, A., & De Belie, N. (2017). Service life and global warming potential of chloride exposed concrete with high volumes of fly ash. Cement and Concrete Composites, 80, 210–223. doi:10.1016/j.cemconcomp.2017.03.020
  • Visser, J. H. M., Gaal, G. C. M., & Rooij, M. R. D. (2005). Time dependency of chloride diffusion coefficients in concrete. Third RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete, Portugal, 421–431.
  • Wang, Y., Shui, Z., Gao, X., Yu, R., Huang, Y., & Cheng, S. (2019). Understanding the chloride binding and diffusion behaviors of marine concrete based on Portland limestone cement-alumina enriched pozzolans. Construction and Building Materials, 198(March), 207–217. doi:10.1016/j.conbuildmat.2018.11.270
  • Weiss, W. J., Snyder, K. A., Bullard, J., & Bentz, D. (2012). Using a saturation function to interpret the electrical properties of partially saturated concrete. Journal of Materials in Civil Engineering, 25(August), 120829040349008. doi:10.1061/(ASCE)MT.1943-5533.0000549
  • Weiss, W. J., Spragg, R. P., Isgor, O. B., Ley, M. T., & Van Dam, T. (2017). Toward Performance Specifications for Concrete: Linking Resistivity, RCPT and Diffusion Predictions Using the Formation Factor for Use in Specifications. In: Hordijk, D., Luković, M. (eds). High Tech Concrete: Where Technology and Engineering Meet.Springer, Cham. https://doi.org/10.1007/978-3-319-59471-2_235
  • Yang, P., Dhandapani, Y., Santhanam, M., & Neithalath, N. (2020). Simulation of chloride diffusion in fly ash and limestone-calcined clay cement (LC3) concretes and the influence of damage on service-life. High Tech Concrete: Where Technology and Engineering Meet, Springer, Cham. doi:10.1016/j.cemconres.2020.106010
  • Yu, Z., & Ye, G. (2013). The pore structure of cement paste blended with fly ash. Construction and Building Materials, 45, 30–35. doi:10.1016/j.conbuildmat.2013.04.012
  • Zhang, Y. Y., Zhou, X., Zhao, J., Zhuang, H., Gao, Y., & Zhang, Y. Y. (2019). Time dependency and similarity of decay process of chloride diffusion in concrete under simulated marine tidal environment. Construction and Building Materials, 205, 332–343. doi:10.1016/j.conbuildmat.2019.02.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.