1,962
Views
0
CrossRef citations to date
0
Altmetric
Articles

Seismic risk assessment for the North Eastern Region of India by integrating seismic hazard and social vulnerability

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 102-132 | Received 10 Aug 2022, Accepted 05 Oct 2022, Published online: 31 Oct 2022

References

  • Abramowitz, M., & Stegun, I. A. (1970). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. National Bureau of Standards Washington DC, 55(319).
  • Agrawal, N., & Dixit, J. (2022a). Assessment of landslide susceptibility for Meghalaya (India) using bivariate (frequency ratio and Shannon entropy) and multi-criteria decision analysis (AHP and fuzzy-AHP) models. All Earth, 34(1), 179–201. https://doi.org/10.1080/27669645.2022.2101256
  • Agrawal, N., & Dixit, J. (2022b). Topographic classification of North Eastern Region of India using geospatial technique and following seismic code provisions. Environmental Earth Sciences, 81(436), 1–20. https://doi.org/10.1007/s12665-022-10556-w
  • Agrawal, N., Gupta, L., & Dixit, J. (2021). Assessment of the socioeconomic vulnerability to seismic hazards in the National Capital Region of India using factor analysis. Sustainability, 13(17), 9652. https://doi.org/10.3390/su13179652
  • Agrawal, N., Gupta, L., & Dixit, J. (2022). Geospatial assessment of active tectonics using SRTM DEM-based morphometric approach for Meghalaya, India. All Earth, 34(1), 39–54. https://doi.org/10.1080/27669645.2022.2081112
  • Al-Dogom, D., Schuckma, K., & Al-Ruzouq, R. (2018). Geostatistical seismic analysis and hazard assessment, United Arab Emirates. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(3/W4). https://pdfs.semanticscholar.org/0315/1affa7423bdbdb05d15fb217cb3e10fd1908.pdf
  • Anbazhagan, P., Bajaj, K., Matharu, K., Moustafa, S. S., & Al-Arifi, N. S. (2019). Probabilistic seismic hazard analysis using the logic tree approach–Patna district (India). Natural Hazards and Earth System Sciences, 19(10), 2097–2115. https://doi.org/10.5194/nhess-19-2097-2019
  • Anbazhagan, P., Bajaj, K., & Patel, S. (2015). Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Natural Hazards, 78(2), 1163–1195. https://doi.org/10.1007/s11069-015-1764-0
  • Anbazhagan, P., Kumar, A., & Sitharam, T. G. (2013). Ground motion prediction equation considering combined dataset of recorded and simulated ground motions. Soil Dynamics and Earthquake Engineering, 53, 92–108. https://doi.org/10.1016/j.soildyn.2013.06.003
  • Armaş, I. (2008). Social vulnerability and seismic risk perception. Case study: The historic center of the Bucharest Municipality/Romania. Natural Hazards, 47(3), 397–410. https://doi.org/10.1007/s11069-008-9229-3
  • Armaș, I., & Gavriș, A. (2013). Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the Social Vulnerability Index (SoVI model)–a case study for Bucharest, Romania. Natural Hazards and Earth System Sciences, 13(6), 1481–1499. https://doi.org/10.5194/nhess-13-1481-2013
  • Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4), 1703–1729. https://doi.org/10.1785/0120020156
  • Bahuguna, A., & Sil, A. (2020). Comprehensive seismicity, seismic sources and seismic hazard assessment of Assam, North East India. Journal of Earthquake Engineering, 24(2), 254–297. https://doi.org/10.1080/13632469.2018.1453405
  • Banica, A., Rosu, L., Muntele, I., & Grozavu, A. (2017). Towards urban resilience: A multi-criteria analysis of seismic vulnerability in Iasi City (Romania). Sustainability, 9(2), 270. https://doi.org/10.3390/su9020270
  • Baro, O., & Kumar, A. (2017). Seismic source characterization for the Shillong Plateau in Northeast India. Journal of Seismology, 21(5), 1229–1249. https://doi.org/10.1007/s10950-017-9664-2
  • Baro, O., Kumar, A., & Ismail-Zadeh, A. (2018). Seismic hazard assessment of the Shillong Plateau, India. Geomatics, Natural Hazards and Risk, 9(1), 841–861. https://doi.org/10.1080/19475705.2018.1494043
  • Baro, O., Kumar, A., & Ismail-Zadeh, A. (2020). Seismic hazard assessment of the Shillong Plateau using a probabilistic approach. Geomatics, Natural Hazards and Risk, 11(1), 2210–2238. https://doi.org/10.1080/19475705.2020.1833989
  • Baruah, S., Boruah, G. K., Sharma, S., Hoque, W. A. et al .(2020). Seismic vulnerability assessment of earthquake-prone mega-city Shillong, India using geophysical mapping and remote sensing. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(2), 112–127. https://doi.org/10.1080/17499518.2019.1598560.
  • Bhatia, S. C., Kumar, M. R., & Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions. Annali Di Geofisica, 42(6). http://hdl.handle.net/2122/1382
  • Bilham, R., & England, P. (2001). Plateau ‘pop-up’ in the great 1897 Assam earthquake. Nature, 410(6830), 806–809. https://doi.org/10.1038/35071057
  • Borah, N., Kumar, A., & Dhanotiya, R. (2021). Seismic source zonation for NE India on the basis of past EQs and spatial distribution of seismicity parameters. Journal of Seismology, 25(6), 1483–1506. https://doi.org/10.1007/s10950-021-10037-w
  • Brandt, K., Graham, L., Hawthorne, T., Jeanty, J., Burkholder, B., Munisteri, C., & Visaggi, C. (2020). Integrating sketch mapping and hot spot analysis to enhance capacity for community‐level flood and disaster risk management. The Geographical Journal, 186(2), 198–212. https://doi.org/10.1111/geoj.12330
  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10
  • Census of India. (2011). Provisional Population Totals. Office of the Registrar General and Census Commissioner. https://censusindia.gov.in/
  • Cerchiello, V., Ceresa, P., Monteiro, R., & Komendantova, N. (2018). Assessment of social vulnerability to seismic hazard in Nablus, Palestine. International Journal of Disaster Risk Reduction, 28, 491–506. https://doi.org/10.1016/j.ijdrr.2017.12.012
  • Chakraborty, L., Rus, H., Henstra, D., Thistlethwaite, J., & Scott, D. (2020). A place-based socioeconomic status index: Measuring social vulnerability to flood hazards in the context of environmental justice. International Journal of Disaster Risk Reduction, 43, 101394. https://doi.org/10.1016/j.ijdrr.2019.101394
  • Cornell, C. A. (1968). Engineering risk in seismic analysis. Bulletin of the Seismological Society of America, 58(5), 1853. https://doi.org/10.1785/BSSA0580051583
  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606. https://doi.org/10.1016/j.gloenvcha.2008.07.013
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
  • D’Amato, M., Laguardia, R., Di Trocchio, G., Coltellacci, M., & Gigliotti, R. (2022). Seismic Risk Assessment for MasonryBuildings Typologies from L ‘ Aquila 2009 Earthquake Damage Data. Journal of Earthquake Engineering, 26(9), 454–4579. https://doi.org/10.1080/13632469.2020.1835750
  • Dasgupta, S. (2011). Earthquake geology, geomorphology and hazard scenario in northeast India, an appraisal. National Workshop on Earthquake Risk Mitigation Strategy in North East. Guwahati (Assam), NIDM, Government of India (24-39), https://nidm.gov.in/PDF/pubs/EQ%20North%20East.pdf
  • Das, S., Gupta, I. D., & Gupta, V. K. (2006). A probabilistic seismic hazard analysis of Northeast India. Earthquake Spectra, 22(1), 1–27. https://doi.org/10.1193/1.2163914
  • Das, R., Sharma, M. L., & Wason, H. R. (2016). Probabilistic seismic hazard assessment for northeast India region. Pure and Applied Geophysics, 173(8), 2653–2670. https://doi.org/10.1007/s00024-016-1333-9
  • Das, R., Wason, H. R., & Sharma, M. L. (2012). Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India. Journal of Earth System Science, 121(1), 19–28. https://doi.org/10.1007/s12040-012-0144-3
  • Del Gaudio, C., De Martino, G., Di Ludovico, M., Manfredi, G., Prota, A., Ricci, P., & Verderame, G. M. (2017). Empirical fragility curves from damage data on RC buildings after the 2009 L’Aquila earthquake. Bulletin of Earthquake Engineering, 15(4), 1425–1450. https://doi.org/10.1007/s10518-016-0026-1
  • Depietri, Y. (2020). The social–ecological dimension of vulnerability and risk to natural hazards. Sustainability Science, 15(2), 587–604. https://doi.org/10.1007/s11625-019-00710-y
  • Derakhshan, S., Hodgson, M. E., & Cutter, S. L. (2020). Vulnerability of populations exposed to seismic risk in the state of Oklahoma. Applied Geography, 124, 102295. https://doi.org/10.1016/j.apgeog.2020.102295
  • Dintwa, K. F., Letamo, G., & Navaneetham, K. (2019). Measuring social vulnerability to natural hazards at the district level in Botswana. Jàmbá: Journal of Disaster Risk Studies, 11(1), 1–11. https://doi.org/10.4102/jamba.v11i1.447
  • Dixit, J., Dewaikar, D. M., & Jangid, R. S. (2012a). Assessment of liquefaction potential index for Mumbai city. Natural Hazards and Earth System Sciences, 12(9), 2759–2768. https://doi.org/10.5194/nhess-12-2759-2012
  • Dixit, J., Dewaikar, D. M., & Jangid, R. S. (2012b). Free field surface motion at different site types due to near-fault ground motions. ISRN Geophysics, 821051, 1–6. https://doi.org/10.5402/2012/821051
  • Dixit, J., Raghukanth, S. T. G., & Dash, S. K. (2016). Spatial distribution of seismic site coefficients for Guwahati city. Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment, 533–537. https://doi.org/10.1007/978-3-319-18663-4_80
  • Dutta, S. C., Halder, L., & Sharma, R. P. (2021). Seismic vulnerability assessment of low to mid-rise RC buildings addressing prevailing design and construction practices in the Northeastern region of the Indian subcontinent: A case study based approach. Structures, 33, 1561–1577. https://doi.org/10.1016/j.istruc.2021.05.032
  • England, P., & Bilham, R. (2015). The Shillong Plateau and the great 1897 Assam earthquake. Tectonics, 34(9), 1792–1812. https://doi.org/10.1002/2015TC003902
  • Fatemi, F., Ardalan, A., Aguirre, B., Mansouri, N., & Mohammadfam, I. (2017). Social vulnerability indicators in disasters: Findings from a systematic review. International Journal of Disaster Risk Reduction, 22, 219–227. https://doi.org/10.1016/j.ijdrr.2016.09.006
  • Frigerio, I., Ventura, S., Strigaro, D., Mattavelli, M., De Amicis, M., Mugnano, S., & Boffi, M. (2016). A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Applied Geography, 74, 12–22. https://doi.org/10.1016/j.apgeog.2016.06.014
  • Fuentes, D. D., Baquedano Julià, P. A., D’Amato, M., & Laterza, M. (2021). Preliminary seismic damage assessment of Mexican churches after September 2017 earthquakes. International Journal of Architectural Heritage, 15(4), 505–525. https://doi.org/10.1080/15583058.2019.1628323
  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367. https://doi.org/10.1785/BSSA0640051363
  • Gautam, D. (2017). Assessment of social vulnerability to natural hazards in Nepal. Natural Hazards and Earth System Sciences, 17(12), 2313–2320. https://doi.org/10.5194/nhess-17-2313-2017
  • Ge, Y., Dou, W., Gu, Z., Qian, X., Wang, J., Xu, W., Shi, P., Ming, X., Zhou, X., & Chen, Y. (2013). Assessment of social vulnerability to natural hazards in the Yangtze River Delta, China. Stochastic Environmental Research and Risk Assessment, 27(8), 1899–1908. https://doi.org/10.1007/s00477-013-0725-y
  • Ghione, F., Poggi, V., & Lindholm, C. (2021). A hybrid probabilistic seismic hazard model for Northeast India and Bhutan combining distributed seismicity and finite faults. Physics and Chemistry of the Earth, 123, 103029. https://doi.org/10.1016/j.pce.2021.103029. Parts A/B/C, 103029.
  • Ghosh, S., & Chakraborty, S. (2017). Probabilistic seismic hazard analysis and synthetic ground motion generation for seismic risk assessment of structures in the Northeast India. International Journal of Geotechnical Earthquake Engineering (IJGEE), 8(2), 39–59. https://doi.org/10.4018/IJGEE.2017070103
  • GSI. (2000). Seismotectonic Atlas of India and its Environs. (New Delhi: Geological Survey of India). https://bhukosh.gsi.gov.in/Bhukosh/Public
  • Gupta, I. D. (2002). The state of the art in seismic hazard analysis. ISET Journal of Earthquake Technology, 39(4), 311–346. https://iset.org.in/public/publications/94921_428.pdf
  • Gupta, L., Agrawal, N., & Dixit, J. (2021). Spatial distribution of bedrock level peak ground acceleration in the National Capital Region of India using geographic information system. Geomatics, Natural Hazards and Risk, 12(1), 3287–3316. https://doi.org/10.1080/19475705.2021.2008022
  • Gupta, L., Agrawal, N., Dixit, J., & Dutta, S. (2022). A GIS-Based Assessment of Active Tectonics from Morphometric Parameters and Geomorphic Indices of Assam Region, India. Journal of Asian Earth Sciences, X, 100115. https://doi.org/10.1016/j.jaesx.2022.100115
  • Gupta, L., & Dixit, J. (2022a). A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level. Geocarto International, 1–33. https://doi.org/10.1080/10106049.2022.2060329
  • Gupta, L., & Dixit, J. (2022b). Estimation of rainfall-induced surface runoff for the Assam region, India, using the GIS-based NRCS-CN method. Journal of Maps, 1–13. https://doi.org/10.1080/17445647.2022.2076624
  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188. https://doi.org/10.1785/BSSA0340040185
  • IS:1893. (2016). Criteria for Earthquake Resistant Design of Structures—General Provisions and Buildings, Part-1. Bureau of Indian Standards.
  • Izquierdo-Horna, L., & Kahhat, R. (2020). An interdisciplinary approach to identify zones vulnerable to earthquakes. International Journal of Disaster Risk Reduction, 48, 101592. https://doi.org/10.1016/j.ijdrr.2020.101592
  • Jain, S. K., Roshan, A. D., Arlekar, J. N., & Basu, P. C. (2000). Empirical attenuation relationships for the Himalayan earthquakes based on Indian strong motion data. In Proceedings of The Sixth International Conference on Seismic Zonation, 12–15
  • Jena, R., Pradhan, B., Naik, S. P., & Alamri, A. M. (2021). Earthquake risk assessment in NE India using deep learning and geospatial analysis. Geoscience Frontiers, 12(3), 101110. https://doi.org/10.1016/j.gsf.2020.11.007
  • Jolliffe, I. T. (2002). Principal Component Analysis and Factor Analysis. Principal component analysis, Ed 2 . Springer series in statistics.Springer, 488. https://doi.org/10.1007/b98835
  • Joshi, G. C., Ghildiyal, S., & Rautela, P. (2019). Seismic vulnerability of lifeline buildings in Himalayan province of Uttarakhand in India. International Journal of Disaster Risk Reduction, 37, 101168. https://doi.org/10.1016/j.ijdrr.2019.101168
  • Karuppusamy, B., Leo George, S., Anusuya, K., Venkatesh, R., Thilagaraj, P., Gnanappazham, L., Kumaraswamy, K., Balasundareshwaran, A. H., & Balabaskaran Nina, P. (2021). Revealing the socioeconomic vulnerability and multi-hazard risks at micro-administrative units in the coastal plains of Tamil Nadu, India. Geomatics, Natural Hazards and Risk, 12(1), 605–630. https://doi.org/10.1080/19475705.2021.1886183
  • Kayal, J. R. (2008). Microearthquake Seismology and Seismotectonics of South Asia (Vol. 503). Springer.
  • Kayal, J. R., Arefiev, S. S., Barua, S., Hazarika, D., Gogoi, N., Kumar, A., ... & Kalita, S. (2006). Shillong plateau earthquakes in northeast India region: complex tectonic model. Current Science, 109-114.
  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, m max. Pure and Applied Geophysics, 161(8), 1655–1681. https://doi.org/10.1007/s00024-004-2531-4
  • Kijko, A., & Sellevoll, M. A. (1989). Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogues with different threshold magnitudes. Bulletin of the Seismological Society of America, 79(3), 645–654. https://doi.org/10.1785/BSSA0790030645
  • Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Pearson Education India.
  • Laguardia, R., D’Amato, M., Coltellacci, M., Di Trocchio, G., & Gigliotti, R. (2022). Fragility Curves and Economic Loss Assessment of RC Buildings after L’Aquila 2009 Earthquake. Journal of Earthquake Engineering, 1–25. https://doi.org/10.1080/13632469.2022.2038726
  • Lee, S., Panahi, M., Pourghasemi, H. R., Shahabi, H., Alizadeh, M., Shirzadi, A., Khosravi, K., Melesse, A. M., Yekrangnia, M., Rezaie, F., Moeini, H., Pham, B. T., & Bin Ahmad, B. (2019). Sevucas: A novel GIS-based machine learning software for seismic vulnerability assessment. Applied Sciences, 9(17), 3495. https://doi.org/10.3390/app9173495
  • Martins, V. N., E Silva, D. S., & Cabral, P. (2012). Social vulnerability assessment to seismic risk using multicriteria analysis: The case study of Vila Franca do Campo (São Miguel Island, Azores, Portugal). Natural Hazards, 62 (2), 385–404. https://doi.org/10.1007/s11069-012-0084-x
  • Mase, L. Z. (2020). Seismic hazard vulnerability of Bengkulu City, Indonesia, based on deterministic seismic hazard analysis. Geotechnical and Geological Engineering, 38(5), 5433–5455. https://doi.org/10.1007/s10706-020-01375-6
  • Mase, L. Z. (2022). Local seismic hazard map based on the response spectra of stiff and very dense soils in Bengkulu city, Indonesia. Geodesy and Geodynamics, 13(6), 573–584. https://doi.org/10.1016/j.geog.2022.05.003
  • Mase, L. Z., Likitlersuang, S., & Tobita, T. (2018). Analysis of seismic ground response caused during strong earthquake in Northern Thailand. Soil Dynamics and Earthquake Engineering, 114, 113–126. https://doi.org/10.1016/j.soildyn.2018.07.006
  • Mase, L. Z., & Sugianto, N. R. (2021). Seismic hazard microzonation of Bengkulu city, Indonesia. Geoenvironmental Disasters, 8(1), 1–17. https://doi.org/10.1186/s40677-021-00178-y
  • McGuire, R. K. (2008). Probabilistic seismic hazard analysis: Early history. Earthquake Engineering & Structural Dynamics, 37(3), 329–338. https://doi.org/10.1002/eqe.765
  • Morrow, B. H. (1999). Identifying and mapping community vulnerability. Disasters, 23, 1–18. https://doi.org/10.1111/1467-7717.00102
  • Mrinalinee Devi, R. K., & Bora, P. K. (2016). The impact of the great 1950 Assam earthquake on the frontal regions of the Northeast Himalaya. In, D'Amico, S. (eds.),Earthquakes and their impact on society Springer Natural Hazards, Springer (475–489). https://doi.org/10.1007/978-3-319-21753-6_19
  • Nandy, D. R. (2001). Geodynamics of Northeastern India and the adjoining region (Revised Edition ed., pp. 2017). Scientific Book Centre.
  • Nath, S. K., & Thingbaijam, K. K. S. (2012). Probabilistic seismic hazard assessment of India. Seismological Research Letters, 83(1), 135–149. https://doi.org/10.1785/gssrl.83.1.135
  • Nath, S. K., Thingbaijam, K. K. S., Maiti, S. K., & Nayak, A. (2012). Ground-motion predictions in Shillong region, Northeast India. Journal of Seismology, 16(3), 475–488. https://doi.org/10.1007/s10950-012-9285-8
  • NDMA. (2010). Development of probabilistic seismic hazard map of India; Technical Report by National Disaster Management Authority, Government of India
  • Ogie, R. I., & Pradhan, B. (2019). Natural hazards and social vulnerability of place: The strength-based approach applied to Wollongong, Australia. International Journal of Disaster Risk Science, 10(3), 404–420. https://doi.org/10.1007/s13753-019-0224-y
  • Ornthammarath, T., Warnitchai, P., Worakanchana, K., Zaman, S., Sigbjörnsson, R., & Lai, C. G. (2011). Probabilistic seismic hazard assessment for Thailand. Bulletin of Earthquake Engineering, 9(2), 367–394. https://doi.org/10.1007/s10518-010-9197-3
  • Pallav, K., Raghukanth, S. T. G., & Singh, K. D. (2012). Probabilistic seismic hazard estimation of Manipur, India. Journal of Geophysics and Engineering, 9(5), 516–533. https://doi.org/10.1088/1742-2132/9/5/516
  • Parvez, I. A., Vaccari, F., & Panza, G. F. (2003). A deterministic seismic hazard map of India and adjacent areas. Geophysical Journal International, 155(2), 489–508. https://doi.org/10.1046/j.1365-246X.2003.02052.x
  • Raghukanth, S. T. G., & Dash, S. K. (2010). Deterministic seismic scenarios for Northeast India. Journal of Seismology, 14(2), 143–167. https://doi.org/10.1007/s10950-009-9158-y
  • Raghukanth, S. T. G., Dixit, J., & Dash, S. K. (2009). Estimation of site amplification factors for Guwahati city. Indian Geotechnical Conference, Guntur, India (IGC), 17-19 December 2009
  • Raghukanth, S. T. G., Dixit, J., & Dash, S. K. (2011). Ground motion for scenario earthquakes at Guwahati city. Acta Geodaetica et Geophysica Hungarica, 46(3), 326–346. https://doi.org/10.1556/AGeod.46.2011.3.5
  • Raghukanth, S. T. G., & Iyengar, R. N. (2006). Seismic hazard estimation for Mumbai city. Current Science, 1486–1494 https://www.jstor.org/stable/24093846.
  • Ramkrishnan, R., Sreevalsa, K., & Sitharam, T. G. (2021). Development of new ground motion prediction equation for the North and Central Himalayas using recorded strong motion data. Journal of Earthquake Engineering, 25(10), 1903–1926. https://doi.org/10.1080/13632469.2019.1605318
  • Rydelek, P. A., & Sacks, I. S. (1989). Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. Nature, 337(6204), 251–253. https://doi.org/10.1038/337251a0
  • Schmidtlein, M. C., Shafer, J. M., Berry, M., & Cutter, S. L. (2011). Modeled earthquake losses and social vulnerability in Charleston, South Carolina. Applied Geography, 31(1), 269–281. https://doi.org/10.1016/j.apgeog.2010.06.001
  • Sharma, S. (1996). Applied Multivariate Techniques. John Wiley and Sons Inc.
  • Sharma, M. L., & Malik, S. (2006). Probabilistic seismic hazard analysis and estimation of spectral strong ground motion on bedrock in northeast India. 4th International Conference on Earthquake Engineering, Taipei, Taiwan, 15 October 12-13, 2006. https://conf.ncree.org.tw/Proceedings/i0951012/data/pdf/4ICEE-0015.pdf
  • Siagian, T. H., Purhadi, P., Suhartono, S., & Ritonga, H. (2014). Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Natural Hazards, 70(2), 1603–1617. https://doi.org/10.1007/s11069-013-0888-3
  • Sil, A., Sitharam, T. G., & Kolathayar, S. (2013). Probabilistic seismic hazard analysis of Tripura and Mizoram states. Natural Hazards, 68(2), 1089–1108. https://doi.org/10.1007/s11069-013-0678-y
  • Sitharam, T. G., & Kolathayar, S. (2013). Seismic hazard analysis of India using areal sources. Journal of Asian Earth Sciences, 62, 647–653. https://doi.org/10.1016/j.jseaes.2012.11.013
  • Sitharam, T. G., & Sil, A. (2014). Comprehensive seismic hazard assessment of Tripura and Mizoram states. Journal of Earth System Science, 123(4), 837–857. https://doi.org/10.1007/s12040-014-0438-8
  • Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proc. of the 1st International Conference on Microzonazion, Seattle 2:897–910
  • Tanapalungkorn, W., Mase, L. Z., Latcharote, P., & Likitlersuang, S. (2020). Verification of attenuation models based on strong ground motion data in Northern Thailand. Soil Dynamics and Earthquake Engineering, 133, 106145. https://doi.org/10.1016/j.soildyn.2020.106145
  • Thingbaijam, K. K. S., Nath, S. K., Yadav, A., Raj, A., Walling, M. Y., & Mohanty, W. K. (2008). Recent seismicity in Northeast India and its adjoining region. Journal of Seismology, 12(1), 107–123. https://doi.org/10.1007/s10950-007-9074-y
  • Verma, R. K., & Kumar, G. K. (1987). Seismicity and the nature of plate movement along the Himalayan arc, Northeast India and Arakan-Yoma: A review. Tectonophysics, 134(1–3), 153–175. https://doi.org/10.1016/0040-1951(87)90255-1
  • Wason, H. R., Das, R., & Sharma, M. L. (2012). Magnitude conversion problem using general orthogonal regression. Geophysical Journal International, 190(2), 1091–1096. https://doi.org/10.1111/j.1365-246X.2012.05520.x
  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382. https://doi.org/10.1785/gssrl.72.3.373
  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114
  • Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698. https://doi.org/10.1785/0120040007
  • Wood, N. J., Burton, C. G., & Cutter, S. L. (2010). Community variations in social vulnerability to Cascadia-related tsunamis in the US Pacific Northwest. Natural Hazards, 52(2), 369–389. https://doi.org/10.1007/s11069-009-9376-1
  • Zhang, W., Xu, X., & Chen, X. (2017). Social vulnerability assessment of earthquake disaster based on the catastrophe progression method: A Sichuan Province case study. International Journal of Disaster Risk Reduction, 24, 361–372. https://doi.org/10.1016/j.ijdrr.2017.06.022