1,772
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of risk-based methods for bridge scour management

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 514-531 | Received 18 Aug 2022, Accepted 27 Jan 2023, Published online: 15 Mar 2023

References

  • Abé, M., Shimamura, M., & Fujino, Y. (2014). Risk management and monitoring of Japanese railway bridges. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 167(2), 88–98. https://doi.org/10.1680/feng.13.00022
  • Alipour, A., Shafei, B., & Shinozuka, M. (2013). Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: Scour and earthquake. Journal of Bridge Engineering (ASCE), 18(5), 362–371. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000369
  • Anderson, N. L., Ismael, A. M., & Thitimakorn, T. (2007). Ground-penetrating radar: A tool for monitoring bridge scour. Environmental & Engineering Geoscience, 13(1), 1–10. https://doi.org/10.2113/gseegeosci.13.1.1
  • Argyroudis, S. A., Mitoulis, S. A., Hofer, L., Zanini, M. A., Tubaldi, E., & Frangopol, D. M. (2020). Resilience assessment framework for critical infrastructure in a multi-hazard environment. Science of Total Environment, 714, [136854]. https://doi.org/10.1016/j.scitotenv.2020.136854
  • Arneson, L., Zevenbergen, L., Lagasse, P., & Clopper, P. (2012). HEC-18 evaluating scour at bridges. Report No. FHWA-HIF-12-003HEC-18. Federal Highway Administration. https://www.fhwa.dot.gov/engineering/hydraulics/pubs/hif12003.pdf [07/10/2022]
  • Austroads. (2018). Guide to Bridge Technology Part 8. Hydraulic Design of Waterway Structures. Austroads Publication No. AGBT08-18, https://bit.ly/3DiXHCg [07/10/2022]
  • Bao, T., & Liu, Z. (2017). Vibration-based bridge scour detection: A review. Structural Control Health Monitoring, 24(7), [e1937]. https://doi.org/10.1002/stc.1937
  • Bennetts, J., Vardanega, P. J., Taylor, C. A., & Denton, S. R. (2020). Survey of the use of data in UK bridge asset management. Proceedings of the Institution of Civil Engineers – Bridge Engineering, 173(4), 211–222. https://doi.org/10.1680/jbren.18.00050
  • Bennetts, J., Webb, G., Denton, S., Vardanega, P. J., & Loudon, N. (2018). Quantifying uncertainty in visual inspection data. In: Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges: Proceedings of the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018),9-13 July 2018Melbourne, Australia. (N. Powers et al. (Eds.)) CRC Press/Balkema, Leiden, the Netherlands, pp. 2252–2259.
  • Bento, A. M., Couto, L., Pêgo, J. P., & Viseu, T. (2018). Advanced characterization techniques of the scour hole around a bridge pier model. In: River Flow 2018 - Ninth International Conference on Fluvial Hydraulics, E3S Web of Conferences, 40: [05066]. https://doi.org/10.1051/e3sconf/20184005066
  • Bento, A. M., Couto, L., Viseu, T., & Pêgo, J. P. (2022). Image-based techniques for the advanced characterization of scour around bridge piers in laboratory. Journal of Hydraulic Engineering, 148(6), [06022004]. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001981
  • Bento, A. M., Gomes, A., Pêgo, J. P., Viseu, T., & Couto, L. (2022). Improved assessment of maximum streamflow for risk management of hydraulic infrastructures. A case study. International Journal of River Basin Management, 1–11. ahead of print. https://doi.org/10.1080/15715124.2021.2016783
  • Bento, A. M., Gomes, A., Viseu, T., Couto, L., & Pêgo, J. P. (2020). Risk-based methodology for scour analysis at bridge foundations. Engineering Structures, 223, [111115]. https://doi.org/10.1016/j.engstruct.2020.111115
  • Bento, A. M., Gomes, A., Viseu, T., Couto, L., & Pêgo, J. P. (2022). Assessment of scour risk in hydraulic infrastructures. A bridge case study. In: International Association for Bridge and Structural Engineering (IABSE) Symposium Report Volume 118,25-27 May 2022 Prague, Czech Republic. (IABSE (Eds)) IABSE, pp 1366–1373.
  • Bento, A. M., Viseu, T., Pêgo, J. P., & Couto, L. (2021). Experimental characterization of the flow field around oblong bridge piers. Fluids, 6(11), [370]. https://doi.org/10.3390/fluids6110370
  • Breuer, A., Janetschek, H., & Malerba, D. (2019). Translating sustainable development goal (SDG) interdependencies into policy advice. Sustainability, 11(7), 2092. https://doi.org/10.3390/su11072092
  • Briaud, J. -L. (2015). Scour depth at bridges: Method including soil Properties. I: Maximum Scour depth prediction. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 141(2), [04014104]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001222
  • Cerema. (2019). Analyse de risque des ponts en site affouillable (in French). Collection: Références.
  • Cheng, M. Y., Chiu, Y. F., Chiu, C. K., Prayogo, D., Wu, Y. W., Hsu, Z. H., & Lin, C. H. (2019). Risk-based maintenance strategy for deteriorating bridges using a hybrid computational intelligence technique: A case study. Structure and Infrastructure Engineering, 15(3), 334–350. https://doi.org/10.1080/15732479.2018.1547767
  • Chryssanthopoulos, M. K., Janssens, V., & Imam, B. (2011). Modelling of failure consequences for robustness evaluation. In IABSE–IASS Symposium: Taller, Longer, Lighter, London, UK. https://core.ac.uk/download/pdf/8767199.pdf [07/10/2022]
  • Coleman, S. E., & Melville, B. W. (2001). Bridge-scour screening methodology for New Zealand bridges. Transfund New Zealand Research Report No. 196. 108pp. https://www.nzta.govt.nz/assets/resources/research/reports/196/196-Bridge-scour-screening-methodology-for-New-Zealand-bridges.pdf [07/10/2022]
  • Collins, J., Ashurst, D., Webb, J., Sparkes, P., & Ghose, A. (2019). Guidance on hidden defects in bridges in the UK and Ireland. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 172(1), 41–53. https://doi.org/10.1680/jbren.18.00021
  • CSLP. (2020). Linee Guida per la Classificazione e Gestione del Rischio, la Valutazione della Sicurezza ed il Monitoraggio dei Ponti Esistenti. Ministero delle Infrastrutture e dei Trasporti. Consiglio Superiore dei Lavori Pubblici In Italian https://www.mit.gov.it/sites/default/files/media/notizia/2020-05/1_Testo_Linee_Guida_ponti.pdf [07/10/2022].
  • Dikanski, H., Hagen-Zanker, A., Imam, B., & Avery, K. (2017). Climate change impacts on railway structures: Bridge scour. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 170(5), 237–248. https://doi.org/10.1680/jensu.15.00021
  • Ding, Y., Yan, T., Yao, Q., Dong, X., & Wang, X. (2016). A new type of temperature-based sensor for monitoring of bridge scour. Measurement, 78, 245–252. https://doi.org/10.1016/j.measurement.2015.10.009
  • Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods. John Wiley & Sons Inc.
  • Djalante, R., Holley, C., & Thomalla, F. (2013). Pathways for adaptive and integrated disaster resilience. Natural Hazards, 69(3), 2105–2135. https://doi.org/10.1007/s11069-013-0797-5
  • Ettema, R., Constantinescu, G., & Melville, B. (2017). Flow-field complexity and design estimation of pier-scour depth: Sixty years since Laursen and Toch. Journal of Hydraulic Engineering (ASCE), 143(9), [03117006]. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001330
  • Flaig, K. D., & Lark, R. J. (2000). The development of UK bridge management systems. Proceedings of the Institution of Civil Engineers – Transport, 141(2), 99–106. https://doi.org/10.1680/tran.2000.141.2.99
  • Flint, M. M., Fringer, O., Billington, S. L., Freyberg, D., & Diffenbaugh, N. S. (2017). Historical analysis of hydraulic bridge collapses in the continental United States. J. of Infr Systems, 23(3), [04017005]. https://doi.org/10.1061/(asce)is.1943-555x.0000354
  • Gidaris, I., Padgett, J. E., Barbosa, A. R., & Chen, S. (2017). Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: State-of-the-art review. Journal of Structural Engineering (ASCE), 143(3), [04016188]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001672
  • Grossi, P., & Kunreuther, H.(2005).Catastrophe modeling: A new approach to managing risk. Huebner international series on risk, insurance and economic security. Springer https://www.springer.com/gp/book/9780387230825. [07/10/2022]
  • Hackl, J., Adey, B. T., & Lethanh, N. (2018). Determination of near-optimal restoration programs for transportation networks followingnatural hazard events using simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 33(8), 618–637. https://doi.org/10.1111/mice.12346
  • Hager, W. H. (2007). Scour in hydraulic engineering. Proceedings of the Institution of Civil Engineers – Water Management, 160(3), 159–168. https://doi.org/10.1680/wama.2007.160.3.159
  • Highways Agency (HA). (2012). The assessment of scour and other hydraulic actions at highway structures BD97/12. Design Manual for Roads & Bridges. HMSO, https://www.standardsforhighways.co.uk/prod/attachments/8ff7a31b-1ce0-4e34-9e94-b2372f125f34?inline=true [07/10/2022]
  • HR Wallingford, R. (1992). Hydraulic aspects of bridges: Assessment of the risk of scour. Report EX2502, HR, Wallingford, https://eprints.hrwallingford.com/315/[07/10/2022]
  • Hurt, M., & Schrock, D. S. (2016). Chapter 7 - Bridge Management. In: Highway bridge maintenance planning and scheduling (Hurt, M. & Schrock, D. S. (Eds.)). Butterworth-Heinemann pp. 289–310; https://doi.org/10.1016/B978-0-12-802069-2.00007-6.
  • Imam, B., & Chryssanthopoulos, M. K. (2012). Causes and consequences of metallic bridge failures. Structural Engineering International, 22(1), 93–98. https://doi.org/10.2749/101686612X13216060213437
  • Institute of Hydrology (IH). (1999). Flood Estimation Handbook (five volumes). Centre for Ecology & Hydrology.
  • JCSS. (2008). Risk assessment in engineering. Principles, system representation and risk criteria. JCSS (Joint Committee on Structural Safety) report. In Faber M.H. (Ed.) ISBN 978-3-909386-78-9
  • Kariyawasam, K., Fidler, P., Talbot, J., & Middleton, C. (2019a). Field assessment of ambient vibration-based bridge scour detection. In: Structural Health Monitoring 2019: Enabling Intelligent Life-cycle Health Management for Industry Internet of Things (IIOT): Proceedings of the 12thInternational Workshop on Structural Health Monitoring, September 10–12, 2019 (F. Chang, A. Güemes, & F. Kopsaftopoulos (Eds.)). Stanford, CA, USA, pp. 374–381. https://doi.org/10.12783/shm2019/32137
  • Kariyawasam, K., Fidler, P., Talbot, J., & Middleton, C. (2019b). Field deployment of an ambient vibration-based scour monitoring system at Baildon Bridge, UK. In: Proceedings of the International Conference on Smart Infrastructure and Construction. Cambridge, UK: ICE Publishing UK, 711–719 https://doi.org/10.1680/icsic.64669.711
  • Kariyawasam, K., Middleton, C., Madabhushi, G., Haigh, S., & Talbot, J. P. (2020). Assessment of bridge natural frequency as an indicator of scour using centrifuge modelling. Journal of Civil Structural Health Monitoring, 10(5), 861–881. https://doi.org/10.1007/s13349-020-00420-5
  • Kerenyi, K., & Flora, K. (2019). A hybrid approach to forensic study of bridge scour. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 172(1), 27–38. https://doi.org/10.1680/jfoen.19.00001
  • Kim, D., Lee, Y., & Lee, M. J. (2018). Development of risk-based bridge maintenance prioritization methodology. KSCE Journal of Civil Engineering, 22(10), 3718–3725. https://doi.org/10.1007/s12205-018-2058-3
  • Kim, C. W., Yoshitome, K., Qi, J., Kitagawa, S., & Hamada, Y. (2020). Vibration-based long-term scour monitoring of railway bridges. XI International Conference on Structural Dynamics, M. Papadrakakis, M. Fragiadakis, & C. Papadimitriou (Eds.), Athens, Greece 2020.
  • Kirby, A. M., Roca, M., Kitchen, A., Escarameia, M., & Chesterton, O. J. (2015). Manual on scour at bridges and other hydraulic structures (2nd ed.). CIRIA.
  • Lamb, R., Garside, P., Pant, R., & Hall, J. W. (2019). A probabilistic model of the economic risk to Britain’s Railway Network from bridge scour during floods. Risk Analysis, 39(11), 2457–2478. https://doi.org/10.1111/risa.13370
  • Liao, K. -W., Lu, H. -J., & Wang, C. -Y. (2015). A probabilistic evaluation of pier-scour potential in the Gaoping River Basin of Taiwan. Journal of Civil Engineering and Management, 21(5), 637–653. https://doi.org/10.3846/13923730.2014.890650
  • Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22(140), 5–55.
  • Limongelli, M. P., Chatzi, E., & Anzlin, A. (2018). Condition assessment of roadway bridges: From performance parameters to performance goals. The Baltic Journal of Road and Bridge Engineering, 13(4), 345–356. https://doi.org/10.7250/bjrbe.2018-13.421
  • Maddison, B. (2012). Scour failure of bridges. Proceedings of the Institution of Civil Engineering – Forensic Engineering, 165(1), 39–52. https://doi.org/10.1680/feng.2012.165.1.39
  • Malekjafarian, A., Kim, C., Obrien, E. J., Prendergast, L. J., Fitzgerald, P. C., & Nakajima, S. (2020). Experimental demonstration of a mode shape-based scour monitoring method for multi-span bridges with shallow foundations. Journal of Bridge Engineering, 25(8), [04020050]. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001586
  • Maroni, A., Tubaldi, E., McDonald, H., & Zonta, D. (2022). An SHM-based classification system for risk management of bridge scour. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 175(2), 92–102. https://doi.org/10.1680/jsmic.21.00016
  • Martín-Vide, J. P., Roca, M., & Alvarado-Ancieta, C. A. (2010). Bend scour protection using riprap. Proceedings of the Institution of Civil Engineers - Water Management, 163(10), 489–497. https://doi.org/10.1680/wama.2010.163.10.489
  • Melville, B. W., & Coleman, S. E. (2000). Bridge scour (pp. 572). Highlands Ranch, Colorado, USA: Water resources publication.
  • Middleton, C. R. (2004). Bridge management and assessment in the UK. In: Proceedings of Austroads, 5th Bridge Conference, Hobart, Tasmania, Australia, 19-21 May 2004. http://www.bridgeforum.org/files/pub/2004/austroads5/Middleton%20keynote.pdf [07/10/2022]
  • Minnesota Department of Transportation (Mn DOT). (2009). Bridge scour evaluation procedure for Minnesota Bridges [on-line]. December 2009. https://www.dot.state.mn.us/bridge/pdf/hydraulics/ScourGuidelines_12-09.pdf [07/10/2022]
  • Mondoro, A., & Frangopol, D. M. (2018). Risk-based cost-benefit analysis for the retrofit of bridges exposed to extreme hydrologic events considering multiple failure modes. Engineering Structures, 159, 310–319. https://doi.org/10.1016/j.engstruct.2017.12.029
  • Moreno, M. E. C. (2016). Experimental study of local scour around complex bridge piers. Ph.D. Thesis. University of Porto, Porto, Portugal. http://hdl.handle.net/10216/85290 [06/10/2022.]
  • Nasr, A., Kjellström, E., Björnsson, I., Honfi, D., Ivanov, O. L., & Johansson, J. (2020). Bridges in a changing climate: A study of the potential impacts of climate change on bridges and their possible adaptations. Structure and Infrastructure Engineering, 16(4), 738–749. https://doi.org/10.1080/15732479.2019.1670215
  • National Academies of Sciences, Engineering , and Medicine (NASEM). 2007. Risk-Based Management Guidelines for Scour at Bridges with Unknown Foundations. The National Academies Press. https://doi.org/10.17226/23243
  • Nepomuceno, D., Bennetts, J., Pregnolato, M., Tryfonas, T., & Vardanega, P. J. (2022). Development of a schema for the remote inspection of Bridges. Proceedings of the Institution of Civil Engineers – Bridge Engineering ( ahead of print). https://doi.org/10.1680/jbren.22.00027
  • NR. (2019). Scour prevention and management. https://bit.ly/3tMdrWd [07/10/2022]
  • NR (Network Rail). (2011). NR/L3/CIV/020 Design of Bridges. Issue 1, March 11.
  • O’Connor, A., & Enevoldsen, I. (2009). Probability-based assessment of highway bridges according to the new Danish guideline. Structure and Infrastructure Engineering, 5(2), 157–168. https://doi.org/10.1080/15732470601022955
  • Panici, D., Kripakaran, P., Djordjević, S., & Dentith, K. (2020). A practical method to assess risks from large wood debris accumulations at bridge piers. Science of Total Environment, 728, [138575]. https://doi.org/10.1016/j.scitotenv.2020.138575
  • Pizarro, A., Manfreda, S., & Tubaldi, E. The science behind Scour at Bridge foundations: A review. (2020). Water, 12(2), 374. 374. https://doi.org/10.3390/w12020374
  • Pregnolato, M. (2019). Bridge safety is not for granted – a novel approach for bridge management. Engineering Structures, 196, [109193]. https://doi.org/10.1016/j.engstruct.2019.05.035
  • Pregnolato, M., Bates, P., Winter, A. O., Mascarenas, D., Sen, A. D., & Motley, M. R. (2021). An integrated impact analysis for riverine bridges subjected to high river flows. In: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations: Proceedings of the Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), Sapporo, Japan, 11-15 April 2021 (H. Yokota & D. M. Frangopol (Eds.)). CRC Press/Balkema Taylor & Francis Group, The Netherlands, pp. 1258–1264. https://doi.org/10.1201/9780429279119-170
  • Pregnolato, M., Giordano, P. F., Panici, D., Prendergast, L. J., & Limongelli, M. P. (2022). A comparison of the UK and Italian national risk-based guidelines for assessing hydraulic actions on bridges. Structure and Infrastructure Engineering, 1–14. ahead of print. https://doi.org/10.1080/15732479.2022.2081709
  • Pregnolato, M., Vardanega, P. J., Limongelli, M. P., Giordano, P. F., & Prendergast, L. J. (2021). Risk-based scour management: A survey. In: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations: Proceedings of the Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), Sapporo, Japan, 11-15 April 2021 (H. Yokota & D. M. Frangopol (Eds.)). CRC Press/Balkema Taylor & Francis Group, The Netherlands, pp. 693–701. https://doi.org/10.1201/9780429279119-91
  • Prendergast, L. J., & Gavin, K. (2014). A review of bridge scour monitoring techniques. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 138–149. https://doi.org/10.1016/j.jrmge.2014.01.007
  • Prendergast, L. J., Hester, D., & Gavin, K. (2016). Determining the presence of scour around bridge foundations using vehicle-induced vibrations. Journal of Bridge Engineering (ASCE), 21(10), [04016065]. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000931
  • Proske, D. (2018). Bridge collapse frequencies versus failure probabilities. In Risk Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-319-73833-8
  • Rail Safety and Standards Board (RSSB). (2004). Impact of scour and flood risk on railway structures, Infrastructure Integrity (4) Research Theme: Report Number T112. https://www.rssb.co.uk/en/research-catalogue/CatalogueItem/T554 [07/10/2022]
  • Sasidharan, M., Parlikad, A. K., & Schooling, J. (2022). Risk-informed asset management to tackle scouring on bridges across transport networks. Structure and Infrastructure Engineering, 18(9), 1300–1316. https://doi.org/10.1080/15732479.2021.1899249
  • Stein, S. M., Young, G. K., Trent, R. E., & Pearson, D. R. (1999). Prioritizing scour vulnerable bridges using risk. Journal of Infrastructure Systems (ASCE), 5(3), 95–101. https://doi.org/10.1061/(ASCE)1076-0342(1999)5:3(95)
  • Suzuki, O., Masui, Y., Abe, M., Samizo, M., & Shimamura, M. (2008). Development of multifunction Scour monitoring device for Railway Bridge Piers part 1: Background and concept. Fourth International Conference on Scour and Erosion 2008, Japanese Geotechnical Society, Tokyo, Japan, pp. 263–266. https://henry.baw.de/bitstream/handle/20.500.11970/100127/b_1.pdf?sequence=1&isAllowed=y [07/10/2022]
  • Tellman, B., Bausch, J. C., Eakin, H., Anderies, J. M., Mazari-Hiriart, M., Manuel-Navarrete, D., & Redman, C. L. (2018). Adaptive pathways and coupled infrastructure: Seven centuries of adaptation to water risk and the production of vulnerability in Mexico City. Ecology and Society, 23(1), [1]. https://doi.org/10.5751/ES-09712-230101
  • Thoft-Christensen, P. (2012). Infrastructures and life-cycle cost-benefit analysis. Structure & Infrastructure Engineering, 8(5), 507–516. https://doi.org/10.1080/15732479.2010.539070
  • Tubaldi, E., Macorini, L., Izzuddin, B. A., Manes, C., & Laio, F. (2017). A framework for probabilistic assessment of clear-water scour around bridge piers. Structural Safety, 69, 11–22. https://doi.org/10.1016/j.strusafe.2017.07.001
  • Tubaldi, E., White, C. J., Patelli, E., Mitoulis, S. A., De Almeida, G., Brown, J., Cranston, M., Hardman, M., Koursari, E., Lamb, R., McDonald, H., Mathews, R., Newell, R., Pizarro, A., Roca, M., & Zonta, D. (2022). Invited perspectives: Challenges and future directions in improving bridge flood resilience. Natural Hazards and Earth System Sciences, 22(3), 795–812. https://doi.org/10.5194/nhess-22-795-2022
  • Tűrksezer, Z. I., Iacovino, C., Giordano, P. F., & Limongelli, M. P. (2021). Development and implementation of indicators to assess bridge inspection practices. Journal of Construction Engineering and Management (ASCE), 147(12), [04021165]. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002195
  • Vardanega, P. J., Gavriel, G., & Pregnolato, M. (2021). Assessing the suitability of bridge-scour-monitoring devices. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 174(4), 105–117. https://doi.org/10.1680/jfoen.20.00022
  • Wang, H., Hsieh, S. C., Li, N. C., & Wang, C. Y. (2014). Forensic diagnosis on flood-induced bridge failure. I: Determination of the possible causes of failure. Journal of Performance of Constructed Facilities (ASCE), 28(1), 76–84. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000419
  • Werner, E. S., Wise, R. M., Butler, R. A. J., Totin, E. J., & Vincent, K. (2021). Adaptation pathways: A review of approaches and a learning framework. Environmental Science & Policy, 116(2), 266–275. https://doi.org/10.1016/j.envsci.2020.11.003
  • Whitbread, J. E., Benn, J. R., & Hailes, J. M. (2000). Cost-effective management of scour-prone bridges. Proceedings of the Institution of Civil Engineers -Transport, 141(2), 79–86. https://doi.org/10.1680/tran.2000.141.2.79
  • Whitbread, J. E., Bettess, R., Riddell, J., & Hey, R. D. (1996). Bridge Scour. Proceedings of the Institution of Civil Engineers - Transport, 117(1), 67–69. https://doi.org/10.1680/itran.1996.28146
  • Wong, S. M., Onof, C. J., & Hobbs, R. E. (2005). Models for evaluating the consequences of bridge failure. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 158(3), 117–128. https://doi.org/10.1680/bren.2005.158.3.117
  • Yuan, V., Argyroudis, S., Tubaldi, E., Pregnolato, M., & Mitoulis, S. (2019). Fragility of bridges exposed to multiple hazards and impact on transport network resilience. Proceedings of the 2019 Society for Earthquake and Civil Engineering Dynamics conference (SECED 2019): Greenwich, London, UK 9-10 Sep 2019.https://openresearch.surrey.ac.uk/esploro/outputs/conferencePresentation/Fragility-of-bridges-exposed-to-multiple/99511698602346 [07/10/2022]
  • Zhu, B., & Frangopol, D. M. (2016). Time-variant risk assessment of bridges with partially and fully closed lanes due to traffic loading and Scour. Journal of Bridge Engineering (ASCE), 21(6), [04016021]. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000817