1,547
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Performance-based selection of pathways for enhancing built infrastructure resilience

ORCID Icon & ORCID Icon
Pages 532-554 | Received 26 Aug 2022, Accepted 20 Feb 2023, Published online: 13 Mar 2023

References

  • ADB. (2022). Disaster-resilient infrastructure unlocking opportunities for Asia and the Pacific. Asian Development Bank. https://doi.org/10.22617/TCS220168-2.
  • Almufti, I., & Willford, M. (2013). Resilience-based Earthquake Design Initiative (REDi) for the Next Generation of Buildings. San Francisco, CA: Arup.
  • Argyroudis, S. A., Mitoulis, S. A., Chatzi, E., Baker, J. W., Brilakis, I., Gkoumas, K., Vousdoukas, M., Hynes, W., Carluccio, S., Keou, O., Frangopol, D. M., & Linkov, I. (2022). Digital technologies can enhance climate resilience of critical infrastructure. Climate Risk Management, 35, 100387. https://doi.org/10.1016/j.crm.2021.100387
  • ASCE-41. (2017) . Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers.
  • ATC 138-3. (2021). Methodology For assessment of functional recovery time. Applied Technology Council. http://www.ATCouncil.org
  • Badal, P. S. (2020). A Framework for Multi-Objective Performance-Based Seismic Design of RC Frame Buildings [ PhD Thesis]. Indian Institute of Technology Bombay.
  • Badal, P. S., & Sinha, R. (2019). Selection of archetypical building configuration for special reinforced concrete moment-resisting frames. Department of Civil Engineering, Indian Institute of Technology Bombay. https://www.civil.iitb.ac.in/~rsinha/TechRep_SMRF_Archetype
  • Badal, P. S., & Sinha, R. (2022). A framework to incorporate probabilistic performance in force-based seismic design of RC buildings as per Indian standards. Journal of Earthquake Engineering, 26(3), 1253–1280. https://doi.org/10.1080/13632469.2020.1713931
  • Baker, J. W. (2011). Conditional mean spectrum: Tool for ground-motion selection. Journal of Structural Engineering, 137(3), 322–331. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000215
  • Bosomworth, K., Harwood, A., Leith, P., & Wallis, P. (2015). Adaptation pathways :A playbook for developing options for climate change adaptation in natural resource management. Southern Slopes Climate Change Adaptation.
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497
  • CDRI. (2019). Home | coalition for disaster resilient infrastructure. https://www.cdri.world/
  • Chang, S. E., Taylor, J. E., Elwood, K. J., Seville, E., Brunsdon, D., & Gartner, M. (2019). Urban disaster recovery in Christchurch: The central business district Cordon and other critical Decisions. Earthquake Spectra, 30(1), 513–532. https://doi.org/10.1193/022413EQS050M
  • Comerio, M. C. (2006). Estimating downtime in loss modeling. Earthquake Spectra, 22(2), 349–365. https://doi.org/10.1193/1.2191017
  • Cook, D. T., Liel, A. B., DeBock, D. J., & Haselton, C. B. (2021). Benchmarking FEMA P-58 repair costs and unsafe placards for the Northridge Earthquake: Implications for performance-based earthquake engineering. International Journal of Disaster Risk Reduction, 56, 102117. https://doi.org/10.1016/J.IJDRR.2021.102117
  • Cook, D. T., Liel, A. B., Haselton, C. B., & Koliou, M. (2022). A framework for operationalizing the assessment of post-earthquake functional recovery of buildings. Earthquake Spectra, 38(3), 1972–2007. https://doi.org/10.1177/87552930221081538
  • Del Gobbo, G. M., Williams, M. S., & Blakeborough, A. (2018). Seismic performance assessment of Eurocode 8-compliant concentric braced frame buildings using FEMA P-58. Engineering Structures, 155, 192–208. https://doi.org/10.1016/j.engstruct.2017.11.016
  • de Ruig, L. T., Barnard, P. L., Botzen, W. J. W., Grifman, P., Hart, J. F., de Moel, H., Sadrpour, N., & Aerts, J. C. J. H. (2019). An economic evaluation of adaptation pathways in coastal mega cities: An illustration for Los Angeles. The Science of the Total Environment, 678, 647–659. https://doi.org/10.1016/j.scitotenv.2019.04.308
  • Djalante, R., Holley, C., Thomalla, F., & Carnegie, M. (2013). Pathways for adaptive and integrated disaster resilience. Natural Hazards, 69(3), 2105–2135. https://doi.org/10.1007/s11069-013-0797-5
  • Du, K., Bai, W., Bai, J., Yan, D., Gong, M., & Sun, J. (2021). Comparative seismic performance assessment of reinforced concrete frame structures with and without structural enhancements using the FEMA p-58 methodology. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(4), 04021047. https://doi.org/10.1061/AJRUA6.0001173
  • Fazey, I., Wise, R. M., Lyon, C., Câmpeanu, C., Moug, P., & Davies, T. E. (2016). Past and future adaptation pathways. Climate and Development, 8(1), 26–44. https://doi.org/10.1080/17565529.2014.989192
  • FEMA. (2016) . National disaster recovery framework. Federal Emergency Management Agency.
  • FEMA P-2090. (2021). Recommended options for improving the built environment for post-earthquake reoccupancy and functional Recovery Time. Federal Emergency Management Agency and National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1254
  • FEMA P-58-1. (2018). Seismic performance assessment of buildings volume 1-methodology. Federal Emergency Management Agency. http://www.ATCouncil.org
  • FEMA P-58-2. (2018). Seismic performance assessment of buildings volume 2-implementation guide second edition. Federal Emergency Management Agency. www.ATCouncil.org-
  • FEMA P-58-3. (2018). Seismic performance assessment of buildings, volume 3 – supporting electronic materials and background documentation. Federal Emergency Management Agency. www.ATCouncil.org/
  • FEMA P-58-5. (2018). Seismic Performance Assessment of Buildings, Volume 5 – Expected Seismic Performance of Code-Conforming Buildings. Federal Emergency Management Agency. www.ATCouncil.org?
  • FEMA P695. (2009) . Quantification of Building Seismic Performance Factors. Federal Emergency Management Agency.
  • Ghasemof, A., Mirtaheri, M., & Karami Mohammadi, R. (2022). Multi-objective optimization for probabilistic performance-based design of buildings using FEMA P-58 methodology. Engineering Structures, 254, 113856. https://doi.org/10.1016/j.engstruct.2022.113856
  • Günay, S., & Mosalam, K. M. (2013). PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering, 17(6), 829–858. https://doi.org/10.1080/13632469.2013.787377
  • Haasnoot, M., Kwakkel, J. H., Walker, W. E., & Ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23(2), 485–498. https://doi.org/10.1016/j.gloenvcha.2012.12.006
  • Haselton, C. B., Liel, A. B., Deierlein, G. G., Dean, B. S., & Chou, J. H. (2011). Seismic collapse safety of reinforced concrete buildings. I: Assessment of ductile moment frames. Journal of Structural Engineering, 137(4), 481–491. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000318
  • Haselton, C. B., Liel, A. B., Taylor Lange, S. C., & Deierlein, G. G. (2016). Calibration of model to simulate response of reinforced concrete beam-columns to collapse. ACI Structural Journal, 113(6), 1141–1152. https://doi.org/10.14359/51689245
  • Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34(12), 1489–1511. https://doi.org/10.1002/eqe.495
  • IPCC. (2014). Climate-resilient pathways: adaptation, mitigation, and sustainable development. working group ii to the fifth assessment report of the intergovernmental panel on climate change
  • IS 13920. (1993). Ductile detailing of reinforced concrete structures subjected to seismic forces - Code of practice. In Bureau of Indian Standards, New Dehli.
  • IS 1893 (Part-1). (2002). Criteria for earthquake resistant design of structures. In Bureau of Indian Standards, New Dehli.
  • IS 456. (2000). Plain and Reinforced Concrete-Code of practice. In Bureau of Indian Standards, New Dehli.
  • Joakim, E. P., Mortsch, L., & Oulahen, G. (2015). Using vulnerability and resilience concepts to advance climate change adaptation. Environmental Hazards, 14(2), 137–155. https://doi.org/10.1080/17477891.2014.1003777
  • Joo, M. R. (2022). Performance-Based Seismic Resilience Assessment of Reinforced Concrete Buildings. Annual Progress Seminar, Department of Civil Engineering, Indian Institute of Technology Bombay.
  • Joo, M. R., Badal, P. S., & Sinha, R. (2022). Recovery-based seismic resilience assessment of IS code-conforming RC buildings. In Proceedings of 17th Symposium on Earthquake Engineering. Roorkee, India: IIT Roorkee.
  • Joo, M. R., & Sinha, R. (2022a). Adaptive Pathways for Disaster-Resilient Infrastructure – Resilience Assessment as a Fundamental Requirement. Proceedings of DRI Technical Conference. New Delhi, India.
  • Joo, M. R., & Sinha, R. (2022b). Functional recovery and performance-based earthquake engineering. National Conference on Resilient Infrastructure (NCRI). Kerala, India.
  • Judd, J. P., & Pakwan, N. (2018). Seismic performance of steel moment frame office buildings with square concrete-filled steel tube gravity columns. Engineering Structures, 172, 41–54. https://doi.org/10.1016/j.engstruct.2018.06.016
  • Kurth, M. H., Keenan, J. M., Sasani, M., & Linkov, I. (2019). Defining resilience for the US building industry. Building Research & Information, 47(4), 480–492. https://doi.org/10.1080/09613218.2018.1452489
  • Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing robust decision-making and dynamic adaptive policy pathways for model-based decision support under deep uncertainty. Environmental Modelling & Software, 86, 168–183. https://doi.org/10.1016/J.ENVSOFT.2016.09.017
  • McKenna, F., Fenves, G. L., & Scott, M. H. (2000). Open System for Earthquake Engineering Simulation. University of California. http://opensees.berkeley.edu
  • Molina Hutt, C., Almufti, I., Willford, M., & Deierlein, G. (2016). Seismic loss and downtime assessment of existing tall steel-framed buildings and strategies for increased resilience. Journal of Structural Engineering, 142(8), C4015005. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001314
  • Molina Hutt, C., Hulsey, A. M., Kakoty, P., Deierlein, G. G., Eksir Monfared, A., Wen-Yi, Y., & Hooper, J. D. (2022). Toward functional recovery performance in the seismic design of modern tall buildings. Earthquake Spectra, 38(1), 283–309. https://doi.org/10.1177/87552930211033620
  • Molina Hutt, C., Vahanvaty, T., & Kourehpaz, P. (2022). An analytical framework to assess earthquake-induced downtime and model recovery of buildings. Earthquake Spectra, 38(2), 1283–1320. https://doi.org/10.1177/87552930211060856
  • Panagiotakos, T. B., & Fardis, M. N. (2001). Deformations oF reinforced concrete members at yielding and ultimate. ACI Structural Journal, 98(2). https://doi.org/10.14359/10181
  • PEER. (2013). PEER NGA-WEST 2 ground motion database. https://ngawest2.berkeley.edu/
  • Raghukanth, S. (2020). Development of probabilistic seismic hazard map of India. Personal Communication.
  • The Rockefeller Foundation. (2013) . 100 Resilient Cities. Rockfeller Foundation.
  • Sikula, N. R., Mancillas, J. W., Linkov, I., & McDonagh, J. A. (2015). Risk management is not enough: A conceptual model for resilience and adaptation-based vulnerability assessments. Environment Systems and Decisions, 35(2), 219–228. https://doi.org/10.1007/s10669-015-9552-7
  • SP3. (2022) . Seismic Performance Prediction Program (v1.2.0). Haselton- Baker Risk Group.
  • Tellman, B., Bausch, J. C., Eakin, H., Anderies, J. M., Mazari-Hiriart, M., Manuel-Navarrete, D., & Redman, C. L. (2018). Adaptive pathways and coupled infrastructure: Seven centuries of adaptation to water risk and the production of vulnerability in Mexico City. Ecology and Society, 23(1), art1. https://doi.org/10.5751/ES-09712-230101
  • Terzic, V., & Kolozvari, K. (2022). Probabilistic evaluation of post-earthquake functional recovery for a tall RC core wall building using F-Rec framework. Engineering Structures, 253, 113785. https://doi.org/10.1016/J.ENGSTRUCT.2021.113785
  • Terzic, V., Villanueva, P. K., Saldana, D., & Yoo, D. Y. (2021). F-Rec framework: Novel framework for probabilistic evaluation of functional recovery of building systems (PEER Report No. 2021/06). Pacific Earthquake Engineering Research Center (PEER).
  • UNDRR. (2005). Hyogo framework for action. United Nations Office for Disaster Risk Reduction. https://www.preventionweb.net/sendai-framework/Hyogo-Framework-for-Action
  • UNDRR. (2015) . Sendai Framework for Disaster Risk Reduction 2015 - 2030. United Nations Office for Disaster Risk Reduction.
  • UNDRR. (2022a) . Handbook for Implementation of the Principles for Resilient Infrastructure. United Nations Office for Disaster Risk Reduction.
  • UNDRR. (2022b) . Principles for Resilient Infrastructure. United Nations Office for Disaster Risk Reduction.
  • UNDRR. (2022c). Global assessment report on disaster risk reduction 2022: Our world at risk: Transforming governance for a resilient Future. United Nations Office for Disaster Risk Reduction.
  • Werners, S. E., Wise, R. M., Butler, J. R. A., Totin, E., & Vincent, K. (2021). Adaptation pathways: A review of approaches and a learning framework. Environmental Science & Policy, 116, 266–275. https://doi.org/10.1016/j.envsci.2020.11.003
  • Wise, R. M., Fazey, I., Stafford Smith, M., Park, S. E., Eakin, H. C., Archer Van Garderen, E. R. M., & Campbell, B. (2014). Reconceptualising adaptation to climate change as part of pathways of change and response. Global Environmental Change, 28, 325–336. https://doi.org/10.1016/j.gloenvcha.2013.12.002