46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transmission line switching spread modelling of synchrophasor smart grid network with load uncertainty inspired by epidemic model: a study of reliability and vulnerability

ORCID Icon & ORCID Icon
Pages 309-327 | Received 06 Apr 2021, Accepted 05 Jan 2024, Published online: 13 Jan 2024

References

  • Almas, M. S., Vanfretti, L., Singh, R. S., & Jonsdottir, G. M. (2017). Vulnerability of synchrophasor-based WAMPAC applications to time synchronization spoofing. IEEE Transactions on Smart Grid, 9(5), 4601–4612. https://doi.org/10.1109/TSG.2017.2665461
  • Appasani, B., & Mohanta, D. K. (2018). A review on synchrophasor communication system: Communication technologies, standards, and applications. Protection and Control of Modern Power Systems, 3(1), 1–17. https://doi.org/10.1186/s41601-018-0110-4
  • Becejac, T., & Dehghanian, P. (2019). PMU multilevel end-to-end testing to assess synchrophasor measurements during faults. IEEE Power & Energy Technology Systems Journal, 6(1), 71–80. https://doi.org/10.1109/JPETS.2019.2900064
  • Bjarnadottir, S., Li, Y., Reynisson, O., & Stewart, M. G. (2018). Reliability-based assessment of climatic adaptation for the increased resiliency of power distribution systems subjected to hurricanes. Sustainable and Resilient Infrastructure, 3(1), 36–48. https://doi.org/10.1080/23789689.2017.1345255
  • Brown, W. E., & Moreno-Centeno, E. (2020). Transmission-line switching for load shed prevention via an accelerated linear programming approximation of ac power flows. IEEE Transactions on Power Systems, 35(4), 2575–2585. https://doi.org/10.1109/TPWRS.2020.2969625
  • Chen, Z., & Zhimin, X. (2020). Eigenvector dimension-reduction method for reliability analysis of power systems under the time-dependent load uncertainty. Sustainable and Resilient Infrastructure, 6(1–2), 1–9. https://doi.org/10.1080/23789689.2019.1708177
  • Chinviriyasit, S., & Chinviriyasit, W. (2010). Numerical modelling of an SIR epidemic model with diffusion. Applied Mathematics and Computation, 216(2), 395–409. https://doi.org/10.1016/j.amc.2010.01.028
  • Daley, D. J., & Gani, J. (2001). Epidemic modelling: An introduction. Cambridge University Press.
  • Ezzeldin, M., & El-Dakhakhni, W. E. (2021). Robustness of Ontario power network under systemic risks. Sustainable and Resilient Infrastructure, 6(3–4), 1–20. https://doi.org/10.1080/23789689.2019.1666340
  • Falahati, B., Fu, Y., & Wu, L. (2012). Reliability assessment of smart grid considering direct cyber-power interdependencies. IEEE Transactions on Smart Grid, 3(3), 1515–1524. https://doi.org/10.1109/TSG.2012.2194520
  • Fisher, E. B., O’Neill, R. P., & Ferris, M. C. (2008). Optimal transmission switching. IEEE Transactions on Power Systems, 23(3), 1346–1355. https://doi.org/10.1109/TPWRS.2008.922256
  • Fuller, J. D., Ramasra, R., & Cha, A. (2012). Fast heuristics for transmission-line switching. IEEE Transactions on Power Systems, 27(3), 1377–1386. https://doi.org/10.1109/TPWRS.2012.2186155
  • Gao, P., Wang, M., Ghiocel, S. G., Chow, J. H., Fardanesh, B., & Stefopoulos, G. (2015). Missing data recovery by exploiting low dimensionality in power system synchrophasor measurements. IEEE Transactions on Power Systems, 31(2), 1006–1013. https://doi.org/10.1109/TPWRS.2015.2413935
  • Guo, Z.-G., Sun, G.-Q., Wang, Z., Jin, Z., Li, L., & Can, L. (2020). Spatial dynamics of an epidemic model with nonlocal infection. Applied Mathematics and Computation, 377, 125158. https://doi.org/10.1016/j.amc.2020.125158
  • Hadad, Y., & Shlivinski, A. (2020). Soft temporal switching of transmission line parameters: Wave-field, energy balance, and applications. IEEE Transactions on Antennas and Propagation, 68(3), 1643–1654. https://doi.org/10.1109/TAP.2020.2967302
  • Hedman, K. W., Ferris, M. C., O’Neill, R. P., Bartholomew Fisher, E., & Oren, S. S. (2010). Co-optimization of generation unit commitment and transmission switching with N-1 reliability. IEEE Transactions on Power Systems, 25(2), 1052–1063. https://doi.org/10.1109/TPWRS.2009.2037232
  • Hedman, K. W., O’Neill, R. P., Bartholomew Fisher, E., & Oren, S. S. (2009). Optimal transmission switching with contingency analysis. IEEE Transactions on Power Systems, 24(3), 1577–1586. https://doi.org/10.1109/TPWRS.2009.2020530
  • He, X., & Jeong Cha, E. (2020). Modeling the damage and recovery of interdependent civil infrastructure network using dynamic integrated network model. Sustainable and Resilient Infrastructure, 5(3), 152–167. https://doi.org/10.1080/23789689.2018.1448662
  • Jabarnejad, M. (2018). Approximate optimal transmission switching. Electric Power Systems Research, 161, 1–7. https://doi.org/10.1016/j.epsr.2018.03.021
  • Jovicic, A., & Hug, G. (2020). Linear state estimation and bad data detection for power systems with RTU and PMU measurements. IET Generation, Transmission and Distribution, 14(23), 5675–5684. https://doi.org/10.1049/iet-gtd.2020.0487
  • Kabir, K. M. A., Kuga, K., & Tanimoto, J. (2019). Analysis of SIR epidemic model with information spreading of awareness. Chaos, Solitons & Fractals, 119, 118–125. https://doi.org/10.1016/j.chaos.2018.12.017
  • Kumar, S., Ahmadian, A., Kumar, R., Kumar, D., Singh, J., Baleanu, D., & Salimi, M. (2020). An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics, 8(4), 558. https://doi.org/10.3390/math8040558
  • Li, B., Dorcas, O.-B., Gel Yulia, R., & Jie, Z. (2020). A hybrid approach for transmission grid resilience assessment using reliability metrics and power system local network topology. Sustainable and Resilient Infrastructure, 6(1–2), 1–16. https://doi.org/10.1080/23789689.2019.1708182
  • Meegahapola, L. G., Siqi, B., Prasad Wadduwage, D., Yung Chung, C., & Xinghuo, Y. (2020). Review on oscillatory stability in power grids with renewable energy sources: Monitoring, analysis, and control using synchrophasor technology. IEEE Transactions on Industrial Electronics, 68(1), 519–531. https://doi.org/10.1109/TIE.2020.2965455
  • Overholt, P., Kosterev, D., Eto, J., Yang, S., & Lesieutre, B. (2014). Improving reliability through better models: Using synchrophasor data to validate power plant models. IEEE Power and Energy Magazine, 12(3), 44–51. https://doi.org/10.1109/MPE.2014.2301533
  • Praks, P., Vytis, K., & Marcelo, M. (2017). Monte-carlo-based reliability and vulnerability assessment of a natural gas transmission system due to random network component failures. Sustainable and Resilient Infrastructure, 2(3), 97–107. https://doi.org/10.1080/23789689.2017.1294881
  • Salkuti, S. R. (2018). Congestion management using optimal transmission switching. IEEE Systems Journal, 12(4), 3555–3564. https://doi.org/10.1109/JSYST.2018.2808260
  • Subcommittee, P., & Subcommittee, Probability Methods. (1979). IEEE reliability test system. IEEE Transactions on Power Apparatus and Systems, 6(6), 2047–2054. https://doi.org/10.1109/TPAS.1979.319398
  • Tariq, M., Ali, M., Naeem, F., & Vincent Poor, H. (2020). Vulnerability assessment of 6G-Enabled smart grid cyber–physical systems. IEEE Internet of Things Journal, 8(7), 5468–5475. https://doi.org/10.1109/JIOT.2020.3042090
  • Unnikrishnan Vipin, U., & John, W. V. D. L. (2016). Probabilistic framework for performance assessment of electrical power networks to tornadoes. Sustainable and Resilient Infrastructure, 1(3–4), 137–152. https://doi.org/10.1080/23789689.2016.1254998
  • Wang, L., & Chiang, H.-D. (2015). Toward online line switching for increasing load margins to static stability limit. IEEE Transactions on Power Systems, 31(3), 1744–1751. https://doi.org/10.1109/TPWRS.2015.2442265
  • Wang, J., Pang, J., & Liu, X. (2014). Modelling diseases with relapse and nonlinear incidence of infection: A multi-group epidemic model. Journal of Biological Dynamics, 8(1), 99–116. https://doi.org/10.1080/17513758.2014.912682
  • Wu, J., & Wang, P. (2021). Post-disruption performance recovery to enhance resilience of interconnected network systems. Sustainable and Resilient Infrastructure, 6(1–2), 107–123. https://doi.org/10.1080/23789689.2019.1710073
  • Yan, J., Haibo, H., Zhong, X., & Tang, Y. (2016). Q-learning-based vulnerability analysis of smart grid against sequential topology attacks. IEEE Transactions on Information Forensics and Security, 12(1), 200–210. https://doi.org/10.1109/TIFS.2016.2607701
  • Yousefi-Khangah, B., Ghassemzadeh, S., Hossein Hosseini, S., & Mohammadi-Ivatloo, B. (2017). Short-term scheduling problem in smart grid considering reliability improvement in bad weather conditions. IET Generation, Transmission and Distribution, 11(10), 2521–2533. https://doi.org/10.1049/iet-gtd.2016.1261
  • Zhao, S., & Singh, C. (2017). Studying the reliability implications of line switching operations. IEEE Transactions on Power Systems, 32(6), 4614–4625. https://doi.org/10.1109/TPWRS.2017.2679541
  • Zhao, L., & Zeng, B. (2013). Vulnerability analysis of power grids with line switching. IEEE Transactions on Power Systems, 28(3), 2727–2736. https://doi.org/10.1109/TPWRS.2013.2256374
  • Zhu, W., Han, M., MilanoviÄ, J. V., & Crossley, P. (2020). Methodology for reliability assessment of smart grid considering risk of failure of communication architecture. IEEE Transactions on Smart Grid, 11(5), 4358–4365. https://doi.org/10.1109/TSG.2020.2982176

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.