264
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Integrating rapid assessment of flood proneness into urban planning under data constraints: a fuzzy logic and bricolage approach

Pages 272-293 | Received 16 May 2016, Accepted 01 Jun 2017, Published online: 22 Jun 2017

REFERENCES

  • Aksoy, H., Kirca, V. S. O., Burgan, H. I., & Kellecioglu, D. (2016, May 18–20). Hydrological and hydraulic models for determination of flood-prone and flood inundation areas.7th International Water Resources Management Conference of ICWRS, Bochum, Germany, IWRM2016-86-1.
  • Al-Abadi, A. M., Shahid, S., & Al-Ali, A. K. (2016). A GIS-based integration of catastrophe theory and analytical hierarchy process for mapping flood susceptibility: A case study of Teeb area, Southern Iraq. Environmental Earth Sciences, 75(8), 1–19. doi:10.1007/s12665-016-5523-7
  • Araya-Muñoz, D., Metzger, M. J., Stuart, N., Wilson, A. M. W., & Carvajal, D. (2017). A spatial fuzzy logic approach to urban multi-hazard impact assessment in Concepcion, Chile. Science of the Total Environment, 576, 508–519. doi:10.1016/j.scitotenv.2016.10.077
  • Ashrafi, M., Hock Chye Chua, L., Quek, C., & Qin, X. (2016). A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data. Journal of Hydrology, 545, 424–435. doi:10.1016/j.jhydrol.2016.11.057
  • Balica, S. F., Wright, N. G., & van der Meulen, F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards, 64. doi:10.1007/s11069-012-0234-1
  • Bardhan, R., Debnath, R., & Bandopadhyay, S. (2016). A conceptual model for identifying the risk susceptibility of urban green spaces using geo-spatial techniques. Modeling Earth Systems and Environment, 2(3), 144. doi:10.1007/s40808-016-0202-y
  • Bardhan, R., Kurisu, K., & Hanaki, K. (2015). Does compact urban forms relate to good quality of life in high density cities of India? Case of Kolkata. Cities, 48, 55–65. doi:10.1016/j.cities.2015.06.005
  • Bezuijen, M. R, Morgan, C, & Mather, R.J. (2011). A rapid vulnerability assessment of coastal habitats and selected species to climate risks in chanthaburi and trat(Thailand), Koh Kong and Kampot (Cambodia), and Kien Giang, Ben Tre, Soc Trang and Can Gio (Vietnam). Gland, Switzerland: IUCN.
  • Blazkova, S., & Beven, K. (1997). Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. Journal of Hydrology, 195(1–4), 256–278. doi:10.1016/S0022-1694(96)03238-6
  • Bubeck, P., Botzen, W. J. W., & Aerts, J. C. J. H. (2012). A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Analysis, 32(9), 1481–1495. doi:10.1111/j.1539-6924.2011.01783.x
  • Butler, C., & Pidgeon, N. (2011). From ‘flood defence’ to ‘flood risk management’: Exploring governance, responsibility, and blame. Environment and Planning C: Government and Policy, 29(3), 533–547. doi:10.1068/c09181j
  • Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., & Niu, C. (2016). Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability (Switzerland), 8, 9. doi:10.3390/su8090948
  • Dasgupta, S., Gosain, A. K., Rao, S., Roy, S., & Sarraf, M. (2013). A megacity in a changing climate: The case of Kolkata. Climatic Change, 116(3–4), 747–766. doi:10.1007/s10584-012-0516-3
  • De Brito, M. M., & Evers, M. (2016). Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Natural Hazards and Earth System Sciences, 16(4), 1019–1033. doi:10.5194/nhess-16-1019-2016
  • Faulkner, H., McCarthy, S., & Tunstall, S. (2010). Flood risk communication. In G. Pender & H. Faulkner (Eds.), Flood Risk Science and Management (pp. 386–406). Oxford: Wiley-Blackwell. https://doi.org/10.1002/9781444324846.ch19
  • Fayne, J. V., Bolten, J. D., Doyle, C. S., Fuhrmann, S., Rice, M. T., Houser, P. R., & Lakshmi, V. (2017). Flood mapping in the lower Mekong River Basin using daily MODIS observations. International Journal of Remote Sensing, 38(6), 1737–1757. doi:10.1080/01431161.2017.1285503
  • Feng, Q., Gong, J., Liu, J., & Li, Y. (2015). Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier-the case of Yuyao, China. Remote Sensing, 7(9), 12539–12562. doi:10.3390/rs70912539
  • Fernández, D. S., & Lutz, M. A. (2010). Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1–4), 90–98. doi:10.1016/j.enggeo.2009.12.006
  • Ganaie, H. A., Hashaia, H., & Kalota, D. (2013). Delineation of flood prone area using Normalized Difference Water Index (NDWI) and transect method: A case study of Kashmir Valley. International Journal of Remote Sensing Applications, 3(2), 53–58.
  • Garg, P. K., & Garg, R. D. (2016). Geospatial techniques for flood inundation mapping Geomatics Engineering Group, Civil Engineering, Indian Institute of Technology Roorkee, India. In Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International Geoscience and Remote Sensing Symposium, (pp. 4387–4390). Beijing: IEEE. https://doi.org/10.1109/IGARSS.2016.7730143
  • Gnecco, G., Morisi, R., Roth, G., Sanguineti, M., & Taramasso, A. C. (2016). Supervised and semi-supervised classifiers for the detection of flood-prone areas. Soft Computing. doi:10.1007/s00500-015-1983-z
  • He, Y., Zhou, J., Kou, P., Lu, N., & Zou, Q. (2011). A fuzzy clustering iterative model using chaotic differential evolution algorithm for evaluating flood disaster. Expert Systems with Applications, 38(8), 10060–10065. doi:10.1016/j.eswa.2011.02.003
  • Herk, S. V., Zevenbergen, C., Ashley, R., & Rijke, J. (2011). Learning and Action Alliances for the integration of flood risk management into urban planning: A new framework from empirical evidence from The Netherlands. Environmental Science and Policy, 14(5), 543–554. doi:10.1016/j.envsci.2011.04.006
  • Hundecha, Y., Bardossy, A., & Werner, H.-W. (2001). Development of a fuzzy logic-based rainfall-runoff model. Hydrological Sciences Journal, 46(3), 363–376. doi:10.1080/02626660109492832
  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. IPCC. doi:10.1596/978-0-8213-8845-7
  • Islam, A. S., Bala, S. K., & Haque, M. A. (2010). Flood inundation map of Bangladesh using MODIS time-series images. Journal of Flood Risk Management, 3(3), 210–222. doi:10.1111/j.1753-318X.2010.01074.x
  • Jameson, S., & Baud, I. (2016). Varieties of knowledge for assembling an urban flood management governance configuration in Chennai, India. Habitat International, 54, 112–123. doi:10.1016/j.habitatint.2015.12.015
  • Jihad, F., & Jacques, T. (2012). Bricolage planning: Understanding planning in a fragmented city. In D. S. Polyzos (Ed), Urban Development. Available from: https://www.intechopen.com/books/urban-development/bricolage-planning-understanding-planning-in-a-fragmented-city
  • Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope-Evros region, Greece. Science of the Total Environment, 538, 555–563. doi:10.1016/j.scitotenv.2015.08.055
  • Khosravi, K., Pourghasemi, H. R., Chapi, K., & Bahri, M. (2016). Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 188(656), 5665–5669. doi:10.1007/s10661-016-5665-9
  • Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), 251–264. doi:10.1007/s12665-011-1504-z
  • Lévi-Strauss, C. (1967). The savage mind. Chicago: University of Chicago Press.
  • Li, C., Cheng, X., Li, N., Du, X., Yu, Q., & Kan, G. (2016). A framework for flood risk analysis and benefit assessment of flood control measures in Urban Areas. International Journal of Environmental Research and Public Health, 13, 8. doi:10.3390/ijerph13080787
  • Li, Z., Wang, C., Emrich, C. T., & Guo, D. (2017). A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods. Cartography and Geographic Information Science, 0(0), 1–14. doi:10.1080/15230406.2016.1271356
  • Lin, L., Di, L., Yu, E. G., Kang, L., Shrestha, R., Rahman, M. S., … Hu, L. (2016). A review of remote sensing in flood assessment. 2016 5th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2016. 10.1109/Agro-Geoinformatics.2016.7577655
  • Lohani, A. K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 442–443, 23–35. doi:10.1016/j.jhydrol.2012.03.031
  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal Of Remote Sensing, 17(7), 1425–1432. doi:10.1080/01431169608948714
  • McFeeters, S. K. (2013). Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. doi:10.3390/rs5073544
  • Meyer, V., Haase, D., & Scheuer, S. (2009). A multicriteria flood risk assessment and mapping approach. Flood Risk Management Research and Practice, (January), 1687–1694. doi:10.1201/9780203883020.ch200
  • Mukerji, A., Chatterjee, C., & Raghuwanshi, N. S. (2009). Flood forecasting using ANN, Neuro-Fuzzy, and neuro-GA models. Journal of Hydrologic Engineering, 14(6), 647–652. doi:10.1061/(ASCE)HE.1943-5584.0000040
  • Nitivattananon, V., Tu, T.T., Rattanapan, A., & Asavanant, J. (2012). Chapter 31: Vulnerability and Resilience of Urban Communities under Coastal Hazard Conditions in Southeast Asia. In D. Hoonweg, M. Freira, M. Lee, P. Bhada, & B. Yuen, (Eds.), Cities and climate change: Responding to an urgent agenda. Washington, D.C.: World Bank.
  • Pacheco-Torres, R., Roldán, J., Gago, E. J., & Ordóñez, J. (2017). Assessing the relationship between urban planning options and carbon emissions at the use stage of new urbanized areas: A case study in a warm climate location. Energy and Buildings, 136, 73–85. doi:10.1016/j.enbuild.2016.11.055
  • Qiu, L., Du, Z., Zhu, Q., & Fan, Y. (2017). An integrated flood management system based on linking environmental models and disaster-related data. Environmental Modelling & Software, 91, 111–126. doi:10.1016/j.envsoft.2017.01.025
  • Raines, G. L., Sawatzky, D. L., & Bonham-Carter, G. F. (2010). Incorporating expert knowledge – New fuzzy logic tools in ArcGIS 10 (ArcUser, Spring, 8–13). Retrieved from www.esri.com
  • Ran, J., & Nedovic-Budic, Z. (2016). Integrating spatial planning and flood risk management: A new conceptual framework for the spatially integrated policy infrastructure. Computers, Environment and Urban Systems, 57, 68–79. doi:10.1016/j.compenvurbsys.2016.01.008
  • Rathjens, H., Bieger, K., Chaubey, I., Arnold, J. G., Allen, P. M., Srinivasan, R., … Volk, M. (2016). Delineating floodplain and upland areas for hydrologic models: A comparison of methods. Hydrological Processes, 30(23), 4367–4383. doi:10.1002/hyp.10918
  • Rosser, J. F., Leibovici, D. G., & Jackson, M. J. (2017). Rapid flood inundation mapping using social media, remote sensing and topographic data. Natural Hazards, 1–18. doi:10.1007/s11069-017-2755-0
  • Sander, S., Hoppe, H., & Schlobinski, S. (2011). Integrating climate change in the urban planning process – A case study (Book Chapter, 1–10). Retrieved from papers://ef64220a-a077-48ec-ae81-be13b32d2073/Paper/p395
  • Sofia, G., Roder, G., Dalla Fontana, G., & Tarolli, P. (2017). Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Scientific Reports, 7(40527), 1–12. doi:10.1038/srep40527
  • Soulis, K. X., & Valiantzas, J. D. (2012). SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds-the two-CN system approach. Hydrology and Earth System Sciences, 16(3), 1001–1015. doi:10.5194/hess-16-1001-2012
  • Suriya, S., & Mudgal, B. V. (2012). Impact of urbanization on flooding: The Thirusoolam sub watershed – A case study. Journal of Hydrology, 412–413, 210–219. doi:10.1016/j.jhydrol.2011.05.008
  • Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125, 91–101. doi:10.1016/j.catena.2014.10.017
  • Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 90, 201–216. doi:10.1016/j.envsoft.2017.01.006
  • Tien Bui, D., Pradhan, B., Nampak, H., Bui, Q.-T., Tran, Q.-A., & Nguyen, Q.-P. (2016). Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317–330. doi:10.1016/j.jhydrol.2016.06.027
  • UN-Habitat. (2011). The state of Asian cities. Retrieved from www.unhabitat.org
  • Vakhshoori, V., & Zare, M. (2016). Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7(5), 1731–1752. doi:10.1080/19475705.2016.1144655
  • World Bank. (2011). India – Vulnerability of Kolkata metropolitan area to increased precipitation in a changing climate (53282), 1–101. Retrieved from https://doi.org/Report No. 53282-IN
  • Xiao, B., Wang, Q. H., Fan, J., Han, F. P., & Dai, Q. H. (2011). Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity. Pedosphere, 21(6), 738–749. doi:10.1016/S1002-0160(11)60177-X
  • Yahaya, S., Ahmad, N., & Abdalla, R. F. (2010). Multicriteria analysis for flood vulnerable areas in Hadejia-Jama’are River Basin, Nigeria. European Journal of Scientific Research, 42(1), 71–83.
  • Yao, L., Chen, L., & Wei, W. (2017). Exploring the linkage between Urban flood risk and spatial patterns in small urbanized catchments of Beijing, China. International Journal of Environmental Research and Public Health, 14(3), 239. doi:10.3390/ijerph14030239
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/S0019-9958(65)90241-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.