1,729
Views
9
CrossRef citations to date
0
Altmetric
Mito Communications

Analysis of mitochondrial DNA sequence and copy number variation across five high-altitude species and their low-altitude relatives

, , , , , , , , , , & show all
Pages 847-851 | Received 02 Feb 2018, Accepted 08 Jul 2018, Published online: 27 Aug 2018

References

  • Bai JL. 2015. Phylotaxonomic position of Tianzhu white yak (Poephagus grunniens) based on nucleotide sequences of multiple subunits of cytochrome c oxidase. J Appl Anim Res. 43:431–438.
  • Cheng Y, Jin X, Shi G, Wang R, Xu T. 2011. Genetic diversity and population structure of miiuy croaker populations in East China Sea revealed by the mitochondrial DNA control region sequence. Biochem Syst Ecol. 39:718–724.
  • Cheviron ZA, Whitehead A, Brumfield RT. 2008. Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient. Mol Ecol. 17:4556–4569.
  • Deng J, Feng J, Li L, Zhong T, Wang L, Guo J, Ba G, Song T, Zhang H. 2017. Polymorphisms, differentiation, and phylogeny of 10 Tibetan goat populations inferred from mitochondrial D-loop sequences. Mitochondrial DNA A DNA Mapp Seq Anal. 29:439–445.
  • Grether GF. 2005. Environmental change, phenotypic plasticity, and genetic compensation. Am Nat. 166:E115–E123.
  • Gu M, Dong X, Shi L, Shi L, Lin K, Huang X, Chu J. 2012. Differences in mtDNA whole sequence between Tibetan and Han populations suggesting adaptive selection to high altitude. Gene. 496:37–44.
  • Hassanin A, Ropiquet A, Couloux A, Cruaud C. 2009. Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol. 68:293–310.
  • Heather LC, Cole MA, Tan JJ, Ambrose LJ, Pope S, Abd-Jamil AH, Carter EE, Dodd MS, Yeoh KK, Schofield CJ, et al. 2012. Metabolic adaptation to chronic hypoxia in cardiac mitochondria. Basic Res Cardiol. 107:268.
  • Hodgkinson A, Idaghdour Y, Gbeha E, Grenier J-C, Hip-Ki E, Bruat V, Goulet J-P, de Malliard T, Awadalla P. 2014. High-Resolution Genomic Analysis of Human Mitochondrial RNA Sequence Variation. Science. 344:413–415.
  • Jin L, Mao K, Li J, Huang W, Che T, Fu Y, Tang Q, Liu P, Song Y, Liu R, et al. 2018. Genome-wide profiling of gene expression and DNA methylation provides insight into low-altitude acclimation in Tibetan pigs. Gene. 642:522–532.
  • Larson J, Drew KL, Folkow LP, Milton SL, Park TJ. 2014. No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. J Exp Biol. 217:1024–1039.
  • Li M, Jin L, Ma J, Tian S, Li R, Li X. 2016. Detecting mitochondrial signatures of selection in wild Tibetan pigs and domesticated pigs. Mitochondrial DNA A DNA Mapp Seq Anal. 27:747–752.
  • Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CKL, Chen L, Ma J, et al. 2013. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 45:1431–1438.
  • Li Y, Huang W, Yu Q, Cheng Y-T, Kong Q-P. 2016. Lower mitochondrial DNA content relates to high-altitude adaptation in Tibetans. Mitochondrial DNA A DNA Mapp Seq Anal. 27:753–757.
  • Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25:1451–1452.
  • Liu JB, Ding XZ, Guo TT, Yue YJ, Zeng YF, Guo X, Chu M, Han JL, Feng RL, Sun XP, et al. 2016. The complete mitochondrial genome sequence of the wild Huoba Tibetan sheep of the Qinghai-Tibetan Plateau in China. Mitochondrial DNA A DNA Mapp Seq Anal. 27:4689–4690.
  • Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, et al. 2014. A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet. 46:951–956.
  • Luo Y, Liao W, Chen Y, Cui J, Liu F, Jiang C, Gao W, Gao Y. 2011. Altitude can alter the mtDNA copy number and nDNA integrity in sperm. J Assist Reprod Genet. 28:951–956.
  • McElroy GS, Chandel NS. 2017. Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res. 356:217–222.
  • Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. 2003. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR‐based assay: lack of change of copy number with age. Nucleic Acids Res. 31:61e–e61.
  • Murray AJ, Horscroft JA. 2016. Mitochondrial function at extreme high altitude. J Physiol (Lond.). 594:1137–1149.
  • Nabholz B, Glémin S, Galtier N. 2009. The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol. 9:54.
  • Nabholz B, Uwimana N, Lartillot N. 2013. Reconstructing the phylogenetic history of long-term effective population size and life-history traits using patterns of amino acid replacement in mitochondrial genomes of mammals and birds. Genome Biol Evol. 5:1273–1290.
  • Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, et al. 2017. Hypoxia induces heart regeneration in adult mice. Nature. 541:222
  • Niu L, Chen X, Xiao P, Zhao Q, Zhou J, Hu J, Sun H, Guo J, Li L, Wang L, et al. 2017. Detecting signatures of selection within the Tibetan sheep mitochondrial genome. Mitochondrial DNA A DNA Mapp Seq Anal. 28:801–809.
  • Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, Larkin DM, et al. 2012. The yak genome and adaptation to life at high altitude. Nat Genet. 44:946
  • Scott GR. 2011. Elevated performance: the unique physiology of birds that fly at high altitudes. J Exp Biol. 214:2455–2462.
  • Scott GR, Richards JG, Milsom WK. 2009. Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds. Am J Physiol Regul Integr Comp Physiol. 297:R1066–R1074.
  • Scott GR, Schulte PM, Egginton S, Scott AL, Richards JG, Milsom WK. 2011. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol. 28:351–363.
  • Shen YY, Shi P, Sun YB, Zhang YP. 2009. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 19:1760–1765.
  • Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, et al. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science. 329:72–75.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30:2725–2729.
  • Tang Q, Gu Y, Zhou X, Jin L, Guan J, Liu R, Li J, Long K, Tian S, Che T, et al. 2017. Comparative transcriptomics of 5 high-altitude vertebrates and their low-altitude relatives. Gigascience. 6:1–9.
  • Tang Q, Huang W, Guan J, Jin L, Che T, Fu Y, Hu Y, Tian S, Wang D, Jiang Z, et al. 2015. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats. Gene. 567:208–216.
  • Yue X, Liang Y, Liang Y, Li F. 2016. Comprehensive investigation of nucleotide diverdity in yaks. Anim Genet. 47:752–755.
  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL. 2008. Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia. J Biol Chem. 283:10892–10903.