Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 3, 2018 - Issue 3
142
Views
4
CrossRef citations to date
0
Altmetric
Review

Population-level pharmacogenomics for precision drug development in dementia

Pages 163-188 | Received 24 Jan 2018, Accepted 19 Apr 2018, Published online: 08 May 2018

References

  • Cacabelos R, Fernández-Novoa L, Lombardi V, et al. Molecular genetics of Alzheimer’s disease and aging. Meth Find Exp Clin Pharmacol. 2005;27(Suppl. A):1–573.
  • Cacabelos R. Have there been improvements in Alzheimer’s disease drug discovery over the past 5 years? Expert Opin Drug Dis. 2018. DOI:10.1080/17460441.2018.1457645
  • Kadohara K, Sato I, Doi Y, et al. Prescription patterns of medications for Alzheimer’s disease in Japan from 2010 to 2015: a descriptive pharmacy claims database study. Neurol Ther. 2017;6(1):25–37.
  • Koller D, Hua T, Bynum JP. Treatment patterns with antidementia drugs in the United States: medicare cohort study. J Am Geriatr Soc. 2016;64(8):1540–1548.
  • Tsolaki M, Papaliagkas V, Frisoni G, et al. MCI patients in Europe: medication and Comorbidities. The DESCRIPA study. Curr Alzheimer Res. 2016;13(12):1407–1413.
  • Allegri N, Rossi F, Del Signore F, et al. Drug prescription appropriateness in the elderly: an Italian study. Clin Interv Aging. 2017;12:325–333.
  • Cummings J, Lee G, Mortsdorf T, et al. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (N Y). 2017;3(3):367–384.
  • Cacabelos R, Teijido O, Carril JC. Can cloud-based tools accelerate Alzheimer’s disease drug discovery? Expert Opin Drug Discov. 2016;11(3):215–223.
  • Dickmann LJ, Ware JA. Pharmacogenomics in the age of personalized medicine. Drug Discov Today Technol. 2016;21-22:11–16.
  • Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet. 2004;5(9):669–676.
  • Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–350.
  • Lauschke VM, Milani L, Ingelman-Sundberg M. Pharmacogenomic biomarkers for improved drug therapy-recent progress and future developments. Aaps J. 2017;20(1):4.
  • Weinshilboum RM, Wang L. Pharmacogenomics: precision medicine and drug response. Mayo Clin Proc. 2017;92(11):1711–1722.
  • Angelbello AJ, Chen JL, Childs-Disney JL, et al. Using genome sequence to enable the design of medicines and chemical probes. Chem Rev. Forthcoming 2018. DOI:10.1021/acs.chemrev.7b00504.
  • Castrillo JI, Lista S, Hampel H, et al. Systems biology methods for Alzheimer’s disease research toward molecular signatures, subtypes, and stages and precision medicine: application in cohort studies and trials. Methods Mol Biol. 2018;1750:31–66.
  • Hampel H, O’Bryant SE, Durrleman S, et al. A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric. 2017;20(2):107–118.
  • Hampel H, Toschi N, Babiloni C, et al. Revolution of Alzheimer precision neurology. passageway of systems biology and neurophysiology. J Alzheimers Dis. 2018. DOI:10.3233/JAD-179932.
  • Cacabelos R. Impact of genomic medicine on the future of neuropsychopharmacology. J Neuropsychopharmacol Mental Health. 2015;1:1.
  • World Guide for Drug Use and Pharmacogenomics. In: Cacabelos R, Ed. EuroEspes Publishing: Corunna, Spain; 2012.
  • Cacabelos R, Cacabelos P, Torrellas C, et al. Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol. 2014;1175:323–556.
  • Cacabelos R, Goldgaber D, Roses AD, et al. Gene interactions in the pharmacogenomics of Alzheimer’s disease. Sciforschen Genetics and Gene Therapy. 2015;1(1). DOI:10.16966/sggt.102
  • Karch CM, Cruchaga C, Goate A, et al. Alzheimer’s disease genetics: from the bench to the clinic. Neuron. 2014;83:11–26.
  • Carril JC, Cacabelos R. Genetic risk factors in cerebrovascular disorders and cognitive deterioration. Cur Genomics. 2017;18:416–429.
  • Teijido O, Carril JC, Cacabelos R. Population-based study of risk polymorphisms associated with vascular disorders and dementia. Cur Genomics. 2017;18:430–441.
  • Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci. 2015;16:30483–30543.
  • Cacabelos R. Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer’s disease and related disorders. Future Neurol. 2018. DOI:10.2217/fnl-2017-0038
  • Shah RR, Gaedigk A. Precision medicine: does ethnicity information complement genotype-based prescribing decisions? Ther Adv Drug Saf. 2018;9(1):45–62.
  • Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome p450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700.
  • Cacabelos R, Torrellas C, Teijido O, et al. Pharmacogenetic considerations in the treatment of Alzheimer’s disease. Pharmacogenomics. 2016;17(9):1041–1074.
  • Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer’s disease. Future Neurol. 2015;10(3):229–252.
  • Cacabelos R, Carril JC, Cacabelos P, et al. Pharmacogenomics of Alzheimer’s disease: genetic determinants of phenotypic variation and therapeutic outcome. J Genomic Med Pharmacogenomics. 2016;1(2):151–209.
  • Kovacsics D, Patik I, Özvegy-Laczka C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol. 2017;13(4):409–424.
  • Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets. 2011;12(5):600–620.
  • Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol. 2013;4:45.
  • Cascorbi I, Flüh C, Remmler C, et al. Association of ATP-binding cassette transporter variants with the risk of Alzheimer’s disease. Pharmacogenomics. 2013;14(5):485–494.
  • Reitz C, Jun G, Naj A, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset Alzheimer disease in African Americans. Jama. 2013;309(14):1483–1492.
  • Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci. 2017;24(1):47.
  • Cacabelos R, Torrellas C, Carrera I, et al. Novel therapeutic strategies for dementia. CNS Neurol Disord Drug Targets. 2016;15(2):141–241.
  • Cacabelos R, Álvarez XA, Lombardi V, et al. Pharmacological treatment of Alzheimer disease: from psychotropic drugs and cholinesterase inhibitors to pharmacogenomics. Drugs Today. 2000;36:415–499.
  • Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Cur Alzheimer Res. 2007;4:479–500.
  • Cacabelos R. Pharmacogenomics in Alzheimer’s disease. Meth Mol Biol. 2008;448:213–357.
  • Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin. Pharmacokinet. 2013;52:225–241.
  • Seripa D, Bizzarro A, Pilotto G, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease, pharmacogenet. Genomics. 2011;21:225–230.
  • Cacabelos R, Martínez R, Fernández-Novoa L, et al. Genomics of dementia: APOE- and CYP2D6-related pharmacogenetics. Intern J Alzheimer Dis. 2012. DOI:10.1155/2012/518901.
  • Chianella C, Gragnaniello D, MaisanoDelser P, et al. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol. 2011;67(11):1147–1157.
  • Magliulo L, Dahl ML, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol. 2011;67:47–54.
  • Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit. 2013;35:270–275.
  • Alfirevic A, Mills T, Carr D, et al. Pirmohamed, Tacrine-induced liver damage: an analysis of 19 candidate genes. Pharmacogenet Genomics. 2017;17:1091–1100.
  • Yang Z, Zhou X, Zhang Q. Effectiveness and safety of memantine treatment for Alzheimer’s disease. J Alzheimers Dis. 2013;36:445–458.
  • Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet. 2013;52:211–223.
  • Cacabelos R. Molecular pathology and pharmacogenomics in Alzheimer’s disease: polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Meth Find Exper Clin Pharmacol. 2007;29(Supp. A):1–91.
  • Pankiewicz JE, Baquero-Buitrago J, Sanchez S, et al. APOE genotype differentially modulates effects of anti-aβ, passive immunization in app transgenic mice. Mol Neurodegener. 2017;12(1):12.
  • Cacabelos R, Goldgaber D, Vostrov A, et al. APOE-TOMM40 in the pharmacogenomics of demetia. J Pharmacogenomics Pharmacoproteomics. 2014;5:135.
  • Roses AD. An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease. Arch Neurol. 2010;67:536–541.
  • Cacabelos R, Meyyazhagan A, Carril JC, et al. Pharmacogenetics of vascular risk factors in Alzheimer’s disease. J Pers Med. 2018;8(1). pii: E3. DOI:10.3390/jpm8010003
  • Appleton JP, Scutt P, Sprigg N, et al. Hypercholesterolaemia and vascular dementia. Clin Sci (Lond). 2017;131:1561–1578.
  • Samara K, Brodaty H, Sachdev PS. Does statin use cause memory decline in the elderly? Trends Cardiovasc Med. 2016;26:550–565.
  • Zissimopoulos JM, Barthold D, Brinton RD, et al. Sex and race differences in the association between statin use and the incidence of Alzheimer disease. JAMA Neurol. 2016. DOI:10.1001/jamaneurol.2016.3783.
  • Maxwell WD, Ramsey LB, Johnson SG, et al. Impact of pharmacogenetics on efficacy and safety of statin therapy for dyslipidemia. Pharmacotherapy. 2017;37(9):1172–1190. Epub 2017 Aug 23.
  • Zhou X, Li Y, Shi X, et al. An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. Am J Transl Res. 2016;8:246–269.
  • Cacabelos R, Carril JC, Teijido O. Pharmacogenomics and epigenomics of age-related neurodegenerative disorders: strategies for drug development. In: vaiserman, A.M. (Ed). anti-aging drugs: from basic research to clinical practice. RSC Drug Discov Ser. 2017;57:75–141.
  • Kitzmiller JP, Mikulik EB, Dauki AM, et al. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016;9:97–106.
  • Wang D, Guo Y, Wrughton SA, et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274–286.
  • Kim KA, Park PW, Lee OJ, et al. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol. 2007;47:87–93.
  • Leduc V, Bourque L, Poirier J, et al. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet Genomics. 2016;26:1–11.
  • Peters BJ, Rodin AS, Klungel OH, et al. Pharmacogenetic interactions between ABCB1 and SLCO1B1 tagging SNPs and the effectiveness of statins in the prevention of myocardial infarction. Pharmacogenomics. 2010;11:1065–1076.
  • Siddiqui M, Maroteau C, Veluchamy A, et al. PREDICTION-ADR consortium. A common missense variant of LILRB5 is associated with statin intolerance and myalgia. Eur Heart J. 2017;38(48):3569–3575.
  • Moonga I, Niccolini F, Wilson H, et al. Alzheimer’s disease neuroimaging initiative. Hypertension is associated with worse cognitive function and hippocampal hypometabolism in Alzheimer’s disease. Eur J Neurol. 2017;24:1173–1182.
  • Norton S, Matthews FE, Barnes DE, et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13:788–794.
  • Jd E, Ramirez J, Callahan BL, et al. Alzheimer’s disease neuroimaging initiative. antihypertensive treatment is associated with mri-derived markers of neurodegeneration and impaired cognition: a propensity-weighted cohort study. J Alzheimers Dis. 2017;59:1113–1122.
  • De Oliveira FF, Chen ES, Smith MC, et al. Pharmacogenetics of angiotensin-converting enzyme inhibitors in patients with Alzheimer’s disease dementia. Curr Alzheimer Res. Forthcoming 2017. DOI:10.2174/1567205014666171016101816
  • Danilov SM, Tovsky SI, Schwartz DE, et al. ACE phenotyping as a guide toward personalized therapy with ACE Inhibitors. J Cardiovasc Pharmacol Ther. 2017;22(4):374–386. Epub 2017 Jan 10.
  • Wain LV, Vaez A, Jansen R, et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension. 2017. DOI:10.1161/HYPERTENSIONAHA.117.09438.
  • Berinstein E, Levy A. Recent developments and future directions for the use of pharmacogenomics in cardiovascular disease treatments. Expert Opin Drug Metab Toxicol. 2017;13(9):973–983.
  • Nielsen RE, Lolk A, Rodrigo-Domingo M, et al. Antipsychotic treatment effects on cardiovascular, cancer, infection, and intentional self-harm as cause of death in patients with Alzheimer’s dementia. Eur Psychiatry. 2017;42:14–23.
  • Delacrétaz A, Vandenberghe F, Gholam-Rezaee M, et al. Early changes of blood lipid levels during psychotropic drug treatment as predictors of long-term lipid changes and of new onset dyslipidemia. J Clin Lipidol. Forthcoming 2017. DOI:10.1016/j.jacl.2017.10.002.
  • Meltzer HY. New trends in the treatment of schizophrenia. CNS Neurol Disord Drug Targets. Forthcoming 2017. DOI:10.2174/1871527316666170728165355
  • Cacabelos R, Cacabelos P, Aliev G. Genomics and pharmacogenomics of antipsychotic drugs. Open J Psychiatry. 2013;3:46–139.
  • Seripa D, Lozupone M, Stella E, et al. Psychotropic drugs and CYP2D6 in late-life psychiatric and neurological disorders. What do we know? Expert Opin Drug Saf. 2017;16(12):1373–1385.
  • Torrellas C, Carril JC, Cacabelos R. Optimization of antidepressant use with pharmacogenetic strategies. Curr Genomics. 2017;18(5):442–449.
  • Bousman CA, Forbes M, Jayaram M, et al. Antidepressant prescribing in the precision medicine era: a prescriber’s primer on pharmacogenetic tools. BMC Psychiatry. 2017;17(1):60.
  • Bradley P, Shiekh M, Mehra V, et al. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility. J Psychiatr Res. 2018;96:100–107.
  • Cacabelos R, Torrellas C. Pharmacogenomics of antidepressants. HSOA J Psychiatry Depress Anxiety. 2015;1:001.
  • Majchrzak-Celińska A, Baer-Dubowska W. Pharmacoepigenetics: an element of personalized therapy? Expert Opin Drug Metab Toxicol. 2017;13(4):387–398.
  • Cacabelos R, Torrellas C.Pharmacoepigenomics.In: Tollefsbol T, Ed.Medical epigenetics. Elsevier. 2016. p. 585-617. DOI:10.1016/B978-0-12-803239-8.00032-6
  • Cacabelos R, Teijido O. Epigenetic drug discovery for Alzheimer’s disease. In: Moskalev A, Vaiserman A, Eds. Epigenetics of aging and longevity. Vol. 1. London, UK: Elsevier/Academic Press; 2018. p. 453–495.
  • Cacabelos R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res. 2014;75(6):348–365.
  • Cacabelos R, Torrellas C. Epigenetic drug discovery for Alzheimer’s disease. Expert Opin Drug Discov. 2014;9(9):1059–1086.
  • Tang X, Chen S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr Drug Metab. 2015;16:86–96.
  • Kim IW, Han N, Burckart GT, et al. Epigenetic changes in gene expression for drug-metabolizing enzymes and transporters. Pharmacotherapy. 2014;34:140–150.
  • Lauschke VM, Barragan I, Ingelman-Sundberg M. Pharmacoepigenetics and toxicoepigenetics: novel mechanistic insights and therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2018;58:161–185.
  • Kang H, Kim C, Lee H, et al. Post-transcriptional controls by ribonucleoprotein complexes in the acquisition of drug resistance. Int J Mol Sci. 2013;14:17204–17220.
  • O’Donnell PH, Wadhwa N, Danahey K, et al. Pharmacogenomics-based point-of-care clinical decision support significantly alters drug prescribing. Clin Pharmacol Ther. 2017;102(5):859–869.
  • Stitziel NO, Kathiresan S. Leveraging human genetics to guide drug target discovery. Trends Cardiovasc Med. 2017;27(5):352–359.
  • Nj K, Mm R, West-Strum D, et al. Preemptive pharmacogenetic testing: exploring the knowledge and perspectives of US payers. Genet Med. Forthcoming 2017. DOI:10.1038/gim.2017.181.
  • Klein ME, Parvez MM, Shin JG. Clinical implementation of pharmacogenomics for personalized precision medicine: barriers and solutions. J Pharm Sci. 2017;106(9):2368–2379.
  • Nelson MR, Johnson T, Warren L3, et al. The genetics of drug efficacy: opportunities and challenges. Nat Rev Genet. 2016;17(4):197–206.
  • Danahey K, Borden BA, Furner B, et al. Simplifying the use of pharmacogenomics in clinical practice: building the genomic prescribing system. J Biomed Inform. 2017;75:110–121.
  • Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J. 2017;17(5):395–402.
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.
  • Kalman LV, Agúndez J, Appell ML, et al. Pharmacogenetic allele nomenclature: international workgroup recommendations for test result reporting. Clin Pharmacol Ther. 2016;99(2):172–185.
  • Ewart L, Dehne EM, Fabre K, et al. Application of microphysiological systems to enhance safety assessment in drug discovery. Annu Rev Pharmacol Toxicol. 2018;58:65–82.
  • Hicks JK, Dunnenberger HM, Gumpper KF, et al. Integrating pharmacogenomics into electronic health records with clinical decision support. Am J Health Syst Pharm. 2016;73(23):1967–1976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.