Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 5, 2020 - Issue 3
41
Views
0
CrossRef citations to date
0
Altmetric
Review

Genetic background of coronary artery disease: clinical implications and perspectives

, , , & ORCID Icon
Pages 135-144 | Received 02 Jan 2020, Accepted 20 Mar 2020, Published online: 09 Apr 2020

References

  • Townsend N, Wilson L, Bhatnagar P, et al. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37(42):3232–3245.
  • Knuuti J, Wijns W, Saraste A, et al.; ESC Scientific Document Group. ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2019:pii: ehz425. DOI:10.1093/eurheartj/ehz425.
  • Stitziel NO, Stirrups KE, Masca NG, et al.; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374:1134–1144.
  • Webb TR 1, Erdmann J 2, Stirrups KE 3, et al.; Myocardial infarction genetics and CARDIoGRAM exome consortia investigators. Systematic evaluation of pleiotropy identifies six further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69:823–836.
  • Mecchia D, Lavezzi AM, Mauri M, et al. Feto-placental atherosclerotic lesions in intrauterine fetal demise: role of parental cigarette smoking. Open Cardiovasc Med J. 2009;3:51–56.
  • Sakakura K, Nakano M, Otsuka F, et al. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 2013;22:399–411.
  • Witztum JL, Lichtman AH. The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol. 2014;9:73–102.
  • Crea F, Liuzzo G. Anti-inflammatory treatment of acute coronary syndromes: the need for precision medicine. Eur Heart J. 2016;37(30):2414–2416.
  • Visscher PM, Hill WG, Wray NR. Heritability in the genomics era – concepts and misconceptions. Nat Rev Genet. 2008;9:255–266.
  • Chial H. Mendelian genetics: patterns of inheritance and single-gene disorders. Nat Educ 2013 Nov 4;1(1):2008. Available from: http://www.nature.com/scitable/topicpage/mendelian-genetics-patterns-ofinheritance-and-single-966
  • Lobo I. Multifactorial inheritance and genetic disease. Nat Educ 2013 Nov 4;1(1):2008. Available from: http://www.nature.com/scitable/topicpage/multifactorial-inheritance-and-genetic-disease-919
  • Elosua R, Lluis-Ganella C, Lucas G. Research into the genetic component of heart disease: from linkage studies to genome-wide genotyping. Rev Esp Cardiol Suppl. 2009;9(Suppl):24B–38B.
  • Wang JG, Staessen JA, Franklin SS, et al. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension. 2005;45:907–913.
  • Visscher PM, Brown MA, McCarthy MI, et al. Five years of GWAS discovery. Am J Hum Genet. 2012 Jan 13;90(1):7–24.
  • Sayols-Baixeras S, Lluís-Ganella C, Lucas G, et al. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet. 2014;16(7):15–32.
  • Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015 Oct;47(10):1121–1130.
  • Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–1493.
  • McPherson R. Chromosome 9p21.3 locus for coronary artery disease: how little we know. J Am Coll Cardiol. 2013;62(15):1382–1383.
  • McVicker G, van de Geijn B, Degner JF, et al. Identification of genetic variants that affect histone modifications in human cells. Science. 2013;342:747–749.
  • Consortium, ENCODE Project. A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011;9:e1001046.
  • Miller CL, Anderson DR, Kundu RK, et al. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet. 2013;9:e1003652.
  • Wild PS, Zeller T, Schillert A, et al. A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circ Cardiovasc Genet. 2011;4:403–412.
  • Reilly MP 1, Li M, He J, et al. Wellcome Trust Case CIdentification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377(9763):383–392.
  • Wang L, Zheng J, Bai X, et al. ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009;104(5):688–698.
  • Bauer RC, Tohyama J, Cui J, et al. Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation. 2015;131:1202–1213.
  • Nurnberg ST, Cheng KR, Raiesdana A, et al. Coronary artery disease associated transcription factor tcf21 regulates smooth muscle precursor cells that contribute to the fibrous cap. PLoS Genet. 2015;11:e1005155.
  • Dichgans M, Malik R, König IR, et al.; METASTROKE Consortium. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45:24–36.
  • Feil R, Kemp-Harper B. cGMP signalling: from bench to bedside. Conference on cGMP generators, effectors and therapeutic implications. EMBO Rep. 2006;7:149–153.
  • Acharya A, Baek ST, Huang G, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139:2139–2149.
  • Braitsch CM, Combs MD, Quaggin SE, et al. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev Biol. 2012;368:345–357.
  • Strong A, Ding Q, Edmondson AC, et al. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J Clin Invest. 2012;122:2807–2816.
  • CARDIoGRAMplusC4D Consortium. Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.
  • Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–169.
  • O’Donnell CJ, Kavousi M, Smith AV, et al.; Consortium, CARDIoGRAM. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124:2855–2864.
  • Wang AZ, Li L, Zhang B, et al. Association of SNP rs17465637 on chromosome 1q41 and rs599839 on 1p13.3 with myocardial infarction in an American Caucasian population. Ann Hum Genet. 2011;75:475–482.
  • Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–719.
  • Kjolby M, Andersen OM, Breiderhoff T, et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12:213–223.
  • Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–197.
  • Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–713.
  • Satoh T, Kidoya H, Naito H, et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature. 2013;495:524–528.
  • Hanna RN, Shaked I, Hubbeling HG, et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res. 2012;110:416–427.
  • Kraja AT, Chasman DI, North KE, et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol Genet Metab. 2014;112:317–338.
  • Wiegman A, Gidding SS, Watts GF, et al.; European Atherosclerosis Society Consensus. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J. 2015;36:2425–2437.
  • Sabatine MS, Giugliano RP, Wiviott SD, et al., Investigators. Open-label study of long-term evaluation against LDL cholesterol (OSLER). Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–1509.
  • Koren MJ, Sabatine MS, Giugliano RP, et al. Long-term low-density lipoprotein cholesterol-lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia: results up to 4 years from the open-label OSLER-1 extension study. JAMA Cardiol. 2017;2(6):598–607.
  • Jin L, Lin X, Yang L, et al. AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension. 2018;71(2):262–272.
  • Guedeney P, Giustino G, Sorrentino S, et al. Efficacy and safety of alirocumab and evolocumab: A systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2019 pii: ehz430. DOI: 10.1093/eurheartj/ehz430.
  • Cole CB, Nikpay M, McPherson R. Gene-environment interaction in dyslipidemia. Curr Opin Lipidol. 2015;26:133–138.
  • Man HSJ, Sukumar AN, Lam GC, et al. Angiogenic patterning by STEEL, an endothelial-enriched long noncoding RNA. Proc Natl Acad Sci U S A. 2018;115(10):2401–2406.
  • Cheng HS, Njock MS, Khyzha N, et al. Noncoding RNAs regulate NF-κB signaling to modulate blood vessel inflammation. Front Genet. 2014;5:422.
  • Neumann P, Jaé N, Knau A, et al. The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun. 2018;9(1):237.
  • Wu G, Cai J, Han Y, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452–1465.
  • Boulberdaa M, Scott E, Ballantyne M, et al. A role for the long non coding RNA SENCR in commitment and function of endothelial cells. Mol Ther. 2016;24(5):978–990.
  • Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial disease. Blood. 2000;95:1517–1532.
  • Di Castelnuovo A, D’Orazio A, Amore C, et al. Genetic modulation of coagulation factor. VII. Plasma levels: contribution of different polymorphisms and gender-related effects. Thromb Haemost. 1998;80:592–597.
  • Morales DE, McGowan KA, Grant DS, et al. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation. 1995;91:755–763.
  • Herrington DM, Howard T, Florance A, et al. Estrogen receptor polymorphisms associated with enhanced response of HDL to estrogen replacement therapy in postmenopausal women, circulation, 2001. Circulation. 2001;103:1353. ( abstract).
  • Sesso HD, Lee IM, Gaziano JM, et al. Maternal and paternal history of myocardial infarction and risk of cardiovascular disease in men and women. Circulation. 2001;104(4):393–398.
  • Piepoli MF, Hoes AW, Agewall S, et al.; ESC Scientific Document Group. ESC scientific document group, 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the european society of cardiology and other societies on cardiovascular disease prevention. Eur Heart J. 2016;37(29):2315–2381.
  • Marrugat J, Vila J, Baena-Díez JM, et al. Relative validity of the 10-year cardiovascular risk estimate in a population cohort of the REGICOR study. Rev Esp Cardiol. 2011;64(5):385–394.
  • Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–2358.
  • Ripatti S, Tikkanen E, Orho-Melander M, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376(9750):1393–1400.
  • Perelshtein Brezinov O, Kivity S, Segev S, et al. Gender-related cardiovascular risk in healthy middle-aged adults. Am J Cardiol. 2016;118(11):1669–1673.
  • Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. New Engl J Med. 1999;340:1801–1811.
  • Armeni E, Lambrinoudaki I. Androgens and cardiovascular disease in women and men. Maturitas. 2017;104:54–72.
  • Colditz GA, Willett WC, Stampfer MJ, et al. Menopause and the risk of coronary disease in women. New Engl J Med. 1987;316:1105–1110.
  • Mosca L, Collins P, Herrington DM, et al. Hormone replacement therapy and cardiovascular disease. A statement for healthcare professionals from the American heart association. Circulation. 2001;104:499–503.
  • Silander K, Alanne M, Kristiansson K, et al. Gender differences in genetic risk profiles for cardiovascular disease. PLoS One. 2008;3(10):e3615.
  • Miserez AR, Keller U. MiDifferences in the phenotypic characteristics of subjects with familial defective apolipoprotein B-100 and familial hypercholesterolemia. Arterioscl Thromb Vasc Biol. 1995;15:1719–1729.
  • Wakatsuki A, Okatani Y, Ikenoue N. Effects of combination therapy with estrogen plus simvastatin on lipoprotein metabolism in postmenopausal women with type IIa hypercholesterolemia. Atherosclerosis. 2000;150:103–111.
  • Thanassoulis G, Peloso GM, Pencina MJ, et al. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham heart study. Circ Cardiovasc Genet. 2012;5(1):113–121.
  • Khera. AV, Chaffin M, Zekavat SM. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation. 2019;139:1593–1602.
  • Inouye M, Abraham G, Nelson CP, et al. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol. 2018;72(16):1883–1893.
  • Sheridan SL, Viera AJ, Krantz MJ, et al. Cardiovascular Health Intervention Research and Translation Network Work Group on Global Coronary Heart Disease Risk. The effect of giving global coronary risk information to adults: a systematic review. Intern Med. 2010;170:230–239.
  • Kullo IJ, Jouni H, Olson JE, et al. Design of a randomized controlled trial of disclosing genomic risk of coronary heart disease: the Myocardial Infarction Genes (MI-GENES) study. BMC Med Genomics. 2015;8:51.
  • Evans WE, McLeod HL. Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–549.
  • Marin F, Gonzalez-Conejero R, Capranzano P, et al. Pharmacogenetics in cardiovascular antithrombotic therapy. J Am Coll Cardiol. 2009;54:1041–1057.
  • Verschuren JJ, Trompet S, Wessels JA, et al. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart J. 2012;33:165–175. **Review on pharmacogenetics in CV disease.
  • Taylor AL, Ziesche S, Yancy C, et al. AfricanAmerican Heart Failure Trial. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure and hydralazine in blacks with heart failure. N Engl J Med. 2004;351:2049–2057.
  • Simon JA, Lin F, Hulley SB, et al. Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: the cholesterol and pharmacogenetics (CAP) Study. Am J Cardiol. 2006;97:843–850.
  • Voora D, Ginsburg GS. Clinical application of cardiovascular pharmacogenetics. J Am Coll Cardiol. 2012;60:9–20.
  • Iakoubova OA, Sabatine MS, Rowland CM, et al. Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2008;51:449–455.
  • Hopewell JC, Parish S, Clarke R, et al. No impact of KIF6 genotype on vascular risk and statin response among 18,348 randomized patients in the heart protection study. J Am Coll Cardiol. 2011;57:2000–2007.
  • Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statininduced myopathy – a genomewide study. N Engl J Med. 2008;359:789–799.
  • Halushka MK, Walker LP, Halushka PV. Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clin Pharmacol Ther. 2003;73:122–130.
  • Faraday N, Yanek LR, Mathias R, et al. Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation. 2007;115:2490–2496.
  • Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharmacol. 2008;66:222–232.
  • Chasman DI, Shiffman D, Zee RY, et al. Polymorphism in the apolipoprotein(a) gene, plasma lipoprotein(a), cardiovascular disease, and low-dose aspirin therapy. Atherosclerosis. 2009;203:371–376.
  • Hall KT, Nelson CP, Davis RB, et al. Polymorphisms in catechol-O-methyltransferase modify treatment effects of aspirin on risk of cardiovascular disease. Arterioscler Thromb Vasc Biol. 2014;34:2160–2167.
  • Shuldiner AR, O’Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302:849–857.
  • Mega JL, Hochholzer W, Frelinger AL III, et al. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA. 2011;306:2221–2228.
  • Wallentin L, James S, Storey RF, et al. Becker RC and investigators, PLATO. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet. 2010;376:1320–1328.
  • Gaziano JM, Concato J, Brophy M, et al.; Million veteran program (MVP). A mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214.
  • Mega JL, Close SL, Wiviott SD, et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376:1312–1319.
  • Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the ESC and of the EACTS. Eur Heart J. 2018 Jan;39(3):213–260.
  • Hochholzer W, Trenk D, Fromm MF, et al. Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol. 2010;55:2427–2434.
  • Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283–2293.
  • Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing–recalibrating expectations. N Engl J Med. 2013;369:2273–2275.
  • Mega JL, Walker JR, Ruff CT, et al. Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385:2280–2287.
  • Mach F, Baigent C, Catapano AL, et al. ESC Scientific Document. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2019;41:pii: ehz455.
  • Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–664.
  • Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014 Jul 8;349:g4227.
  • van der Harst P 1, van der Steege G, de Boer RA, et al. MERIT-HF study. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007;49(13):1459–1464.
  • Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006.
  • Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383–2390.
  • Simionescu N, Niculescu LS, Carnuta MG, et al. Hyperglycemia determines increased specific MicroRNAs levels in sera and HDL of acute coronary syndrome patients and stimulates micrornas production in human macrophages. PLoS One. 2016;11(8):e0161201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.