Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 5, 2020 - Issue 3
54
Views
0
CrossRef citations to date
0
Altmetric
Review

Precision medicine in cardiac electrophysiology: where we are and where we need to go

, &
Pages 165-180 | Received 26 Jan 2020, Accepted 07 Apr 2020, Published online: 28 Apr 2020

References

  • Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. N Engl J Med [Internet]. 1991 Mar 21;324(12):781–788.
  • Køber L, Torp-Pedersen C, McMurray JJV, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med [Internet]. 2008 Jun 19;358(25):2678–2687.
  • Kober L, Bloch Thomsen PE, Moller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet. 2000 Dec;356(9247):2052–2058.
  • Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD investigators. Survival with oral d-sotalol. Lancet. 1996 Jul;348(9019):7–12.
  • Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter. Circulation. 2000;102(19):2385–2390.
  • Torp-Pedersen C, Moller M, Bloch-Thomsen PE, et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish investigations of arrhythmia and mortality on dofetilide study group. N Engl J Med. 1999 Sep;341(12):857–865.
  • Antiarryhthmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997 Nov;337(22);1576–1583.
  • Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002 Mar;346(12):877–883.
  • Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005 Jan;352(3):225–237.
  • Pappone C, Vicedomini G, Augello G, et al. Radiofrequency catheter ablation and antiarrhythmic drug therapy: a prospective, randomized, 4-year follow-up trial: the APAF study. Circ Arrhythm Electrophysiol. 2011 Dec;4(6):808–814.
  • Cosedis Nielsen J, Johannessen A, Raatikainen P, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012 Oct;367(17):1587–1595.
  • Morillo CA, Verma A, Connolly SJ, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA. 2014 Feb;311(7):692–700.
  • Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med [Internet]. 2018 Jan 31;378(5):417–427.
  • Roden DM. Personalized medicine to treat arrhythmias. Curr Opin Pharmacol. 2014 Apr;15:61–67.
  • Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci. 2007 Oct;3(7):420–427.
  • Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet England. 2002;3:391–397.
  • Farrell MS, Werge T, Sklar P, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry. 2015 May;20(5):555–562.
  • Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008 Mar;299(11):1335–1344.
  • Pulst SM. Genetic linkage analysis. Arch Neurol. 1999 Jun;56(6):667–672.
  • Brenyo AJ, Huang DT, Aktas MK. Congenital long and short QT syndromes. Cardiology. 2012;122(4):237–247.
  • Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012 Aug;5(4):868–877.
  • Romano C, Gemme G, Pongiglione R. Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation. (Presentation of 1st case in Italian pediatric literature). Clin Pediatr (Bologna). 1963 Sep;45:656–683.
  • Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964 Apr;54:103–106.
  • Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J. 1957 Jul;54(1):59–68.
  • Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand. 1971 Sep;60(5):559–564.
  • Tawil R, Ptacek LJ, Pavlakis SG, et al. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol. 1994 Mar;35(3):326–330.
  • Splawski I, Timothy KW, Decher N, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005 Jun;102(23):8088–8089.
  • Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996 Jan;12(1):17–23.
  • Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995 Mar;80(5):795–803.
  • Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995 Mar;80(5):805–811.
  • Keating M, Atkinson D, Dunn C, et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science. 1991 May;252(5006):704–706.
  • Towbin JA, Li H, Taggart RT, et al. Evidence of genetic heterogeneity in Romano-Ward long QT syndrome. Analysis of 23 families. Circulation. 1994 Dec;90(6):2635–2644.
  • Dausse E, Denjoy I, Kahlem P, et al. Readjusting the localization of long QT syndrome gene on chromosome 11p15. C R Acad Sci III. 1995 Aug;318(8):879–885.
  • Jiang C, Atkinson D, Towbin JA, et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet. 1994 Oct;8(2):141–147.
  • Tyson J, Tranebjaerg L, Bellman S, et al. IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet. 1997 Nov;6(12):2179–2185.
  • Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet. 1997;17:267–268. United States.
  • Adler A, Novelli V, Amin AS, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020 Feb;141(6):418–428.
  • Brink PA, Lia C, Valerie C, et al. Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation [Internet]. 2005 Oct 25;112(17):2602–2610.
  • Moss AJ, Wojciech Z, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the Pore region of the human ether-a-go-go–related gene potassium channel. Circulation [Internet]. 2002 Feb 19;105(7):794–799.
  • Moss AJ, Wataru S, Wilde AAM, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation [Internet]. 2007 May 15;115(19):2481–2489.
  • Crotti L, Lundquist AL, Insolia R, et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation. 2005 Aug;112(9):1251–1258.
  • Duchatelet S, Crotti L, Peat RA, et al. Identification of a KCNQ1 polymorphism acting as a protective modifier against arrhythmic risk in long-QT syndrome. Circ Cardiovasc Genet. 2013 Aug;6(4):354–361.
  • Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001 Jan;103(1):89–95.
  • Martini B, Nava A, Thiene G, et al. Ventricular fibrillation without apparent heart disease: description of six cases. Am Heart J. 1989 Dec;118(6):1203–1209.
  • Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: A distinct clinical and electrocardiographic syndrome: A multicenter report. J Am Coll Cardiol [Internet]. 1992;20(6):1391–1396. Available from: http://www.sciencedirect.com/science/article/pii/073510979290253J
  • Brugada J, Campuzano O, Arbelo E, et al. Present status of brugada syndrome: JACC state-of-the-art review. J Am Coll Cardiol. 2018 Aug;72(9):1046–1059.
  • de Luna AB, Brugada J, Baranchuk A, et al. Current electrocardiographic criteria for diagnosis of Brugada pattern: a consensus report. J Electrocardiol [Internet]. 2012;45(5):433–442. Available from: http://www.sciencedirect.com/science/article/pii/S0022073612002026
  • Casado-Arroyo R, Berne P, Rao JY, et al. Long-term trends in newly diagnosed brugada syndrome: implications for risk stratification. J Am Coll Cardiol. 2016 Aug;68(6):614–623.
  • Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998 Mar;392(6673):293–296.
  • Hosseini SM, Kim R, Udupa S, et al. Reappraisal of reported genes for sudden arrhythmic death. Circulation. 2018 Sep;138(12):1195–1205.
  • Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Hear Rhythm. 2010 Jan;7(1):33–46.
  • Antzelevitch C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2024–38.
  • Antzelevitch C. Drug-induced spatial dispersion of repolarization. Cardiol J. 2008;15(2):100–121.
  • Bezzina C, Veldkamp MW, van Den Berg MP, et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res. 1999 Dec;85(12):1206–1213.
  • Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation. 1999 Oct;100(15):1660–1666.
  • Mok N-S, Priori SG, Napolitano C, et al. A newly characterized SCN5A mutation underlying Brugada syndrome unmasked by hyperthermia. J Cardiovasc Electrophysiol. 2003 Apr;14(4):407–411.
  • Porres JM, Brugada J, Urbistondo V, et al. Fever unmasking the Brugada syndrome. Pacing Clin Electrophysiol. 2002 Nov;25(11):1646–1648.
  • Amin AS, Meregalli PG, Bardai A, et al. Fever increases the risk for cardiac arrest in the Brugada syndrome. Ann Intern Med United States. 2008;149:216–218.
  • Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Hear Rhythm. 2013 Dec;10(12):1932–1963.
  • Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015 Nov;36(41):2793–2867.
  • Bhuiyan ZA, van den Berg MP, van Tintelen JP, et al. Expanding spectrum of human RYR2-related disease. Circulation. 2007;116(14):1569–1576.
  • Swan H, Piippo K, Viitasalo M, et al. Arrhythmic disorder mapped to chromosome 1q42–q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol [Internet]. 1999;34(7):2035–2042. Available from: http://www.sciencedirect.com/science/article/pii/S0735109799004611
  • Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2):196–200.
  • Laitinen PJ, Brown KM, Piippo K, et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103(4):485–490.
  • Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol [Internet]. 2009;54(22):2065–2074. Available from: http://www.sciencedirect.com/science/article/pii/S0735109709029350
  • Lahat H, Eldar M, Levy-Nissenbaum E, et al. Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia. Circulation. 2001;103(23):2822–2827.
  • Campuzano O, Sarquella-Brugada G, Brugada R, et al. Genetics of channelopathies associated with sudden cardiac death. Glob Cardiol Sci Pract. 2015;2015(3):39.
  • Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–35.
  • Hong KUI, Bjerregaard P, Gussak I, et al. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol [Internet]. 2005;16(4):394–396. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1540-8167.2005.40621.x
  • Bellocq C, van Ginneken ACG, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–2397.
  • Hong K, Piper DR, Diaz-Valdecantos A, et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res [Internet]. 2005;68(3):433–440.
  • Moreno C, Oliveras A, de la Cruz A, et al. A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovasc Res [Internet]. 2015;107(4):613–623.
  • Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800–807.
  • Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007 Jul;448(7151):353–357.
  • Kaab S, Darbar D, van Noord C, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009 Apr;30(7):813–819.
  • Wang J, Klysik E, Sood S, et al. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci U S A. 2010 May;107(21):9753–9758.
  • Parvez B, Vaglio J, Rowan S, et al. Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. J Am Coll Cardiol [Internet]. 2012;60(6):539–545. Available from: http://www.onlinejacc.org/content/60/6/539
  • Hodgson-Zingman DM, Karst ML, Zingman LV, et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008 Jul;359(2):158–165.
  • Yang T, Yang P, Roden DM, et al. Novel KCNA5 mutation implicates tyrosine kinase signaling in human atrial fibrillation. Hear Rhythm. 2010 Sep;7(9):1246–1252.
  • Filonenko K, Katus HA, Meder B. Precision medicine approach to genetic cardiomyopathy. Herz. 2017 Aug;42(5):468–475.
  • McNally EM. Mestroni L. Dilated Cardiomyopathy. Circ Res. 2017;121(7):731–748.
  • Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016 Jun;37(23):1850–1858.
  • Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017 Jul;390(10092):400–414.
  • Burke MA, Cook SA, Seidman JG, et al. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016 Dec;68(25):2871–2886.
  • Medizin S, Gmbh V, Heidelberg C. Precision medicine approach to genetic cardiomyopathy. Herz. 2017;42:468–475.
  • Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010 Apr;121(13):1533–1541.
  • Chockalingam P, Crotti L, Girardengo G, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2: higher recurrence of events under metoprolol. J Am Coll Cardiol. 2012 Nov;60(20):2092–2099.
  • Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004 Sep;292(11):1341–1344.
  • Skinner JR. Guidelines for the diagnosis and management of familial long QT syndrome. Heart Lung Circ. 2007 Feb;16(1):22–24.
  • Etheridge SP, Compton SJ, Tristani-Firouzi M, et al. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol. 2003 Nov;42(10):1777–1782.
  • Moss AJ, Windle JR, Hall WJ, et al. Safety and efficacy of flecainide in subjects with Long QT-3 syndrome (DeltaKPQ mutation): a randomized, double-blind, placebo-controlled clinical trial. Ann Noninvasive Electrocardiol. 2005 Oct;10(4 Suppl):59–66.
  • Priori SG, Napolitano C, Schwartz PJ, et al. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation. 2000 Aug;102(9):945–947.
  • Mazzanti A, Maragna R, Faragli A, et al. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol. 2016 Mar;67(9):1053–1058.
  • Wang DW, Crotti L, Shimizu W, et al. Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel. Circ Arrhythm Electrophysiol. 2008 Dec;1(5):370–378.
  • Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary. Circulation. 2018 Sep;138(13):e210–71.
  • Cho Y. Left cardiac sympathetic denervation: an important treatment option for patients with hereditary ventricular arrhythmias. J Arrhythmia. 2016 Oct;32(5):340–343.
  • Collura CA, Johnson JN, Moir C, et al. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Hear Rhythm. 2009 6;Jun(6):752–759.
  • Weatherford DA, Stephenson JE, Taylor SM, et al. Thoracoscopy versus thoracotomy: indications and advantages. Am Surg. 1995 Jan;61(1):83–86.
  • Woosley R, Heise C, Gallo T, et al. www.CredibleMeds.org, QTdrugs List. AZCERT, Inc. 1822 Innovation Park Dr., Oro Valley, AZ 85755.
  • Epstein AE, DiMarco JP, Ellenbogen KA, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines and the heart rhythm society. J Am Coll Cardiol. 2013 Jan;61(3):e6–75.
  • Andorin A, Gourraud J-B, Mansourati J, et al. The QUIDAM study: hydroquinidine therapy for the management of Brugada syndrome patients at high arrhythmic risk. Hear Rhythm. 2017 Aug;14(8):1147–1154.
  • Belhassen B, Glick A, Viskin S. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation. 2004 Sep;110(13):1731–1737.
  • Fisher JD, Krikler D, Hallidie-Smith KA. Familial polymorphic ventricular arrhythmias: A quarter century of successful medical treatment based on serial exercise-pharmacologic testing. J Am Coll Cardiol [Internet]. 1999;34(7):2015–2022. Available from: http://www.sciencedirect.com/science/article/pii/S0735109799004386
  • Sumitomo N, Harada K, Nagashima M, et al. Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart. 2003 Jan;89(1):66–70.
  • Rosso R, Kalman JM, Rogowski O, et al. Calcium channel blockers and beta-blockers versus beta-blockers alone for preventing exercise-induced arrhythmias in catecholaminergic polymorphic ventricular tachycardia. Hear Rhythm. 2007 Sep;4(9):1149–1154.
  • Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol [Internet]. 2004;43(8):1494–1499. Available from: http://www.sciencedirect.com/science/article/pii/S0735109704004437
  • Wolpert C, Schimpf R, Giustetto C, et al. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol [Internet]. 2005;16(1):54–58. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1540-8167.2005.04470.x
  • Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol [Internet]. 2011;58(6):587–595. Available from: http://www.sciencedirect.com/science/article/pii/S0735109711017748
  • Hershberger RE, Givertz MM, Ho CY, et al. Genetic evaluation of cardiomyopathy-a heart failure society of america practice guideline. J Card Fail. 2018 May;24(5):281–302.
  • Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011 Dec;58(25):e212–60.
  • Corrado D, Wichter T, Link MS, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Circulation. 2015 Aug;132(5):441–453.
  • Watanabe H, Chopra N, Laver D, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med [Internet]. 2009;15(4):380–383.
  • van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011 May;57(22):2244–2254.
  • Watanabe H, van der Werf C, Roses-Noguer F, et al. Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Hear Rhythm. 2013 Apr;10(4):542–547.
  • Moss AJ, Zareba W, Schwarz KQ, et al. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008 Dec;19(12):1289–1293.
  • Crotti L, Johnson CN, Graf E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013 Mar;127(9):1009–1017.
  • Veerman CC, Mengarelli I, Guan K, et al. hiPSC-derived cardiomyocytes from Brugada Syndrome patients without identified mutations do not exhibit clear cellular electrophysiological abnormalities. Sci Rep. 2016;6:30967.
  • Liang P, Sallam K, Wu H, et al. Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome. J Am Coll Cardiol. 2016 Nov;68(19):2086–2096.
  • Bezzerides VJ, Caballero A, Wang S, et al. Gene therapy for catecholaminergic polymorphic ventricular tachycardia by inhibition of Ca(2+)/Calmodulin-dependent Kinase II. Circulation. 2019 Jul;140(5):405–419.
  • Ito R, Takahashi T, Ito M. Humanized mouse models: application to human diseases. J Cell Physiol. 2018 May;233(5):3723–3728.
  • Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med public Heal. 2016;2016(1):170–176.
  • Gomaa AA, Klumpe HE, Luo ML, et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio [Internet]. 2014 Jan 28;5(1):e00928. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24473129
  • Xie F, Ye L, Chang JC, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res [Internet]. 2014 Sep;24(9):1526–1533. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25096406
  • Khan FA, Pandupuspitasari NS, Chun-Jie H, et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget [Internet]. 2016 Aug 9;7(32):52541–52552. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27250031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.