Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 5, 2020 - Issue 3
97
Views
5
CrossRef citations to date
0
Altmetric
Review

Personalized approaches for the management of glaucoma

, , & ORCID Icon
Pages 145-164 | Received 03 Dec 2019, Accepted 14 Apr 2020, Published online: 12 May 2020

References

  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–1911.
  • Quigley HA. Glaucoma. Lancet. 2011;377(9774):1367–1377.
  • Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–618.
  • Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090.
  • Foster PJ, Buhrmann R, Quigley HA, et al. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86(2):238–242.
  • Sommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The baltimore eye survey. Arch Ophthalmol. 1991;109(8):1090–1095. .
  • Fard MA, Moghimi S, Sahraian A, et al. Optic nerve head cupping in glaucomatous and non-glaucomatous optic neuropathy. Br J Ophthalmol. 2019;103(3):374–378.
  • Zhang YX, Huang HB, Wei SH. Clinical characteristics of nonglaucomatous optic disc cupping. Exp Ther Med. 2014;7(4):995–999.
  • Dias DT, Ushida M, Battistella R, et al. Neurophthalmological conditions mimicking glaucomatous optic neuropathy: analysis of the most common causes of misdiagnosis. BMC Ophthalmol. 2017;17(1):2.
  • Mallick J, Devi L, Malik PK, et al. Update on normal tension glaucoma. J Ophthalmic Vis Res. 2016;11(2):204–208.
  • Anderson DR. Normal-tension glaucoma (Low-tension glaucoma). Indian J Ophthalmol. 2011;59(Suppl):S97–101.
  • Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108(11):1943–1953.
  • Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002;120(10):1268–1279.
  • The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS investigators. Am J Ophthalmol. 2000;130(4):429–440. .
  • Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative normal-tension glaucoma study group. Am J Ophthalmol. 1998;126(4):487–497.
  • Gordon MO, Beiser JA, Brandt JD, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–720. discussion 829–30.
  • Kass MA, Heuer DK, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthal. 2002;120(6):701–713.
  • Harrington DO. The pathogenesis of the glaucoma field: clinical evidence that circulatory insufficiency in the optic nerve is the primary cause of visual field loss in glaucoma. Am J Ophthalmol. 1959;47(5):177–185.
  • Plange N, Remky A, Arend O. Colour doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma. Br J Ophthalmol. 2003;87(6):731–736.
  • Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res. 2001;20(3):319–349.
  • Kaiser HJ, Schoetzau A, Stumpfig D, et al. Blood-flow velocities of the extraocular vessels in patients with high- tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997;123(3):320–327.
  • Grunwald JE, Piltz J, Hariprasad SM, et al. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998;39(12):2329–2336.
  • Corbett JJ, Phelps CD, Eslinger P, et al. The neurologic evaluation of patients with low-tension glaucoma. Invest Ophthalmol Vis Sci. 1985;26(8):1101–1104.
  • Drance S, Anderson DR, Schulzer M, et al. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131(6):699–708.
  • Furlanetto RL, De Moraes CG, Teng CC, et al. Risk factors for optic disc hemorrhage in the low-pressure glaucoma treatment study. Am J Ophthalmol. 2014;157(5):945–952.
  • Cursiefen C, Wisse M, Cursiefen S, et al. Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am J Ophthalmol. 2000;129(1):102–104.
  • Kruit MC, Launer LJ, Ferrari MD, et al. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 2005;128(9):2068–2077.
  • Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol. 1998;82(8):862–870.
  • Chen H-Y, Lin C-L, Kao C-H. Does migraine increase the risk of glaucoma?: A population-based cohort study. Medicine (Baltimore). 2016;95(19):e3670.
  • Xu C, Li J, Li Z, et al. Migraine as a risk factor for primary open angle glaucoma: A systematic review and meta-analysis. Medicine (Baltimore). 2018;97(28):e11377.
  • Orgül S, Kaiser HJ, Flammer J, et al. Systemic blood pressure and capillary blood-cell velocity in glaucoma patients: a preliminary study. Eur J Ophthalmol. n.d.;5(2):88–91.
  • Charlson ME, De Moraes CG, Link A, et al. Nocturnal systemic hypotension increases the risk of glaucoma progression. Ophthalmology. 2014;121(10):2004–2012.
  • Bowe A, Grünig M, Schubert J, et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathy–a systematic review and meta-analysis. Am J Hypertens. 2015;28(9):1077–1082. .
  • Kwon J, Lee J, Choi J, et al. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma. Am J Ophthalmol. 2017;176:87–101.
  • Chung HJ, Hwang HB, Lee NY. The association between primary open-angle glaucoma and blood pressure: two aspects of hypertension and hypotension. Biomed Res Int. 2015;2015:827516.
  • de la Torre JC. Alzheimer disease as a vascular disorder: nosological evidence. Stroke. 2002;33(4):1152–1162.
  • Sugiyama T, Utsunomiya K, Ota H, et al. Comparative study of cerebral blood flow in patients with normal-tension glaucoma and control subjects. Am J Ophthalmol. 2006;141(2):394–396.
  • Kountouras J, Zavos C, Gavalas E, et al. Normal-tension glaucoma and Alzheimer’s disease: helicobacter pylori as a possible common underlying risk factor. Med Hypotheses. 2007;68(1):228–229.
  • Kountouras J, Zavos C, Chatzopoulos D. Primary open-angle glaucoma: pathophysiology and treatment. Lancet. n.d.;364(9442):1311–1312.
  • Mancino R, Martucci A, Cesareo M, et al. Glaucoma and alzheimer disease: one age-related neurodegenerative disease of the brain. Curr Neuropharmacol. 2018;16(7):971–977.
  • Zabel P, Kaluzny JJ, Wilkosc-Debczynska M, et al. Comparison of retinal microvasculature in patients with alzheimer’s disease and primary open-angle glaucoma by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60(10):3447–3455.
  • Fan N, Wang P, Tang L, et al. Ocular blood flow and normal tension glaucoma. Biomed Res Int. 2015;2015:1–7.
  • Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 2013;13(1):43–49.
  • Gasser P, Meienberg O. Finger microcirculation in classical migraine. A video-microscopic study of nailfold capillaries. Eur Neurol. 1991;31(3):168–171.
  • Phelps CD, Corbett JJ. Migraine and low-tension glaucoma. A case-control study. Invest Ophthalmol Vis Sci. 1985;26(8):1105–1108.
  • Flammer J, Grieshaber MC, Terhorst T. The pathogenesis of optic disc splinter haemorrhages: a new hypothesis. Acta Ophthalmol Scand. 2006. DOI:10.1111/j.1600-0420.2005.00590.x
  • Hafez AS, Bizzarro R, Descovich D, et al. Correlation between finger blood flow and changes in optic nerve head blood flow following therapeutic intraocular pressure reduction. J Glaucoma. 2005;14(6):448–454.
  • Konieczka K, Erb C. Diseases potentially related to flammer syndrome. Epma J. 2017;8(4):327–332.
  • Tamaki Y, Araie M, Tomita K, et al. Effect of topical beta-blockers on tissue blood flow in the human optic nerve head. Curr Eye Res. 1997;16(11):1102–1110.
  • Tamaki Y, Araie M, Tomita K, et al. Effect of topical betaxolol on tissue circulation in the human optic nerve head. J Ocul Pharmacol Ther. 1999;15(4):313–321.
  • Tsuda S, Yokoyama Y, Chiba N, et al. Effect of topical tafluprost on optic nerve head blood flow in patients with myopic disc type. J Glaucoma. n.d.;22(5):398–403. .
  • Tamaki Y, Nagahara M, Araie M, et al. Topical latanoprost and optic nerve head and retinal circulation in humans. J Ocul Pharmacol Ther. 2002. DOI:10.1089/108076801753266785
  • Ishii K, Tomidokoro A, Nagahara M, et al. Effects of topical latanoprost on optic nerve head circulation in rabbits, monkeys, and humans. Invest Ophthalmol Vis Sci. 2001;42(12):2957–2963.
  • Sugiyama T, Kojima S, Ishida O, et al. Changes in optic nerve head blood flow induced by the combined therapy of latanoprost and beta blockers. Acta Ophthalmol. 2009;87(7):797–800.
  • Vetrugno M, Maino A, Cantatore F, et al. Acute and chronic effects of brimonidine 0.2% on intraocular pressure and pulsatile ocular blood flow in patients with primary open-angle glaucoma: an open-label, uncontrolled, prospective study. Clin Ther. 2001;23(9):1519–1528.
  • Mayama C, Araie M. Effects of antiglaucoma drugs on blood flow of optic nerve heads and related structures. Jpn J Ophthalmol. 2013;57(2):133–149.
  • Allen KF, Gaier ED, Wiggs JL. Genetics of primary inherited disorders of the optic nerve: clinical applications. Cold Spring Harb Perspect Med. 2015;5(7):a017277.
  • Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(90001):D668–72.
  • V M, H J, P O, et al. Metabolism of ophthalmic timolol: new aspects of an old drug. Basic Clin Pharmacol Toxicol. 2011;108(5):297-303.
  • L X-L, J Q-J, W L-N, et al. Roles of CYP2C19 gene polymorphisms in susceptibility to POAG and individual differences in drug treatment response. Med Sci Monit. 2016. Available from: http://huji-primo.hosted.exlibrisgroup.com/openurl/972HUJI/972HUJI_SP?sid=EMBASE&sid=EMBASE&=16433750&id=doi:10.12659/MSM.894868&atitle=Roles+of+CYP2C19+gene+polymorphisms+in+susceptibility+to+POAG+and+individual+differences+in+drug+treatment+response&stitle=Med.+Sci.+Monit.&title=Medical+Science+Monitor&volume=22&issue=&spage=310&epage=315&aulast=Liu&aufirst=Xiang-Long&auinit=X.-L.&aufull=Liu+X.-L.&coden=MSMOF&isbn=&pages=310-315&date=2016&auinit1=X&auinitm=-L.
  • McCarty CA, Burmester JK, Mukesh BN, et al. Intraocular pressure response to topical β-blockers associated with an ADRB2 single-nucleotide polymorphism. Arch Ophthal. 2008;126(7):959.
  • Moroi SE, Raoof DA, Reed DM, et al. Progress toward personalized medicine for glaucoma. Expert Rev Ophthalmol. 2009;4(2):145–161.
  • U F, F I, B M, et al. Association between SNPs of metalloproteinases and prostaglandin F2 alpha receptor genes and latanoprost response in open-angle glaucoma. Ophthalmology. 2015. DOI:10.1016/j.ophtha.2014.12.038.
  • Zhang P, Jiang B, Xie L, et al. PTGFR and SLCO2A1 gene polymorphisms determine intraocular pressure response to latanoprost in han chinese patients with glaucoma. Curr Eye Res. 2016;41(12):1561–1565.
  • Cui XJ, Zhao AG, Wang XL. Correlations of AFAP1, GMDS and PTGFR gene polymorphisms with intra-ocular pressure response to latanoprost in patients with primary open-angle glaucoma. J Clin Pharm Ther. 2017;42(1):87–92.
  • Fini ME, Schwartz SG, Gao X, et al. Steroid-induced ocular hypertension/glaucoma: focus on pharmacogenomics and implications for precision medicine. Prog Retin Eye Res. 2017;56:58–83.
  • O’Gorman L, Cree AJ, Ward D, et al. Comprehensive sequencing of the myocilin gene in a selected cohort of severe primary open-angle glaucoma patients. Sci Rep. 2019;9(1):3100. .
  • Turalba AV, Chen TC. Clinical and genetic characteristics of primary juvenile-onset open-angle glaucoma (JOAG). Semin Ophthalmol. 2008;23(1):19–25.
  • Wiggs JL, Allingham RR, Vollrath D, et al. Prevalence of mutations in TIGR/myocilin in patients with adult and juvenile primary open-angle glaucoma. Am J Hum Genet. 2002. DOI:10.1086/302098.
  • Donegan RK, Hill SE, Freeman DM, et al. Structural basis for misfolding in myocilin-associated glaucoma. Hum Mol Genet. 2015;24(8):2111–2124.
  • Aung T, Rezaie T, Okada K, et al. Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci. 2005;46(8):2816.
  • Hauser MA, Sena DF, Flor J, et al. Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States. J Glaucoma. 2006;15(5):358–363.
  • Cirulli ET, Lasseigne BN, Petrovski S, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science. 2015;347(6229):1436–1441.
  • Stein JD, Newman-Casey PA, Talwar N, et al. The relationship between statin use and open-angle glaucoma. Ophthalmology. 2012;119(10):2074–2081.
  • Wiggs JL, Pasquale LR. Genetics of glaucoma. Hum Mol Genet. 2017;26(R1):R21-R27.
  • Wiggs JL. Glaucoma genes and mechanisms. Prog Mol Biol Transl Sci. 2015;134:315–342.
  • Awadalla MS, Burdon KP, Souzeau E, et al. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. JAMA Ophthalmol. 2014;132(8):970.
  • Crowley C, Paterson R, Lamey T, et al. Autosomal recessive bestrophinopathy associated with angle-closure glaucoma. Doc Ophthalmol. 2014;129(1):57–63.
  • Khor CC, Do T, Jia H, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48(5):556–562.
  • Pasquale LR, Borrás T, Fingert JH, et al. Exfoliation syndrome: assembling the puzzle pieces. Acta Ophthalmol. 2016;94(6):e505-e512.
  • Chitranshi N, Dheer Y, Abbasi M, et al. Glaucoma pathogenesis and neurotrophins: focus on the molecular and genetic basis for therapeutic prospects. Curr Neuropharmacol. 2018;16(7):1018–1035.
  • Zode GS, Kuehn MH, Nishimura DY, et al. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest. 2011;121(9):3542–3553.
  • Kaufman PL, Mohr ME, Riccomini SP, et al. Glaucoma drugs in the pipeline. Asia-Pac J Ophthalmol. 2018. DOI:10.22608/apo.2018298.
  • Clement CI, Goldberg I. The management of complicated glaucoma. Indian J Ophthalmol. 2011;59(Suppl):S141–7.
  • Sihota R, Angmo D, Ramaswamy D, et al. Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma. Indian J Ophthalmol. 2018;66(4):495–505.
  • Orzalesi N, Rossetti L, Bottoli A, et al. The effect of latanoprost, brimonidine, and a fixed combination of timolol and dorzolamide on circadian intraocular pressure in patients with glaucoma or ocular hypertension. Arch Ophthal. 2003;121(4):453–457.
  • Wilensky JT. Diurnal variations in intraocular pressure. Trans Am Ophthalmol Soc. 1991;89:757–790.
  • Frampton P, Da Rin D, Brown B. Diurnal variation of intraocular pressure and the overriding effects of sleep. Am J Optom Physiol Opt. 1987;64(1):54–61. .
  • Buguet A, Py P, Romanet JP. 24-hour (nyctohemeral) and sleep-related variations of intraocular pressure in healthy white individuals. Am J Ophthalmol. 1994;117(3):342–347.
  • Itoh Y, Nakamoto K, Horiguchi H, et al. Twenty-four-hour variation of intraocular pressure in primary open-angle glaucoma treated with triple eye drops. J Ophthalmol. 2017;2017:4398494.
  • Nakakura S, Nomura Y, Ataka S, et al. Relation between office intraocular pressure and 24-hour intraocular pressure in patients with primary open-angle glaucoma treated with a combination of topical antiglaucoma eye drops. J Glaucoma. 2007;16(2):201–204.
  • Higginbotham EJ, Schuman JS, Goldberg I, et al. One-year, randomized study comparing bimatoprost and timolol in glaucoma and ocular hypertension. Arch Ophthalmol. 2002;120(10):1286–1293.
  • Mundorf T. A 12-month, multicenter, randomized, double-masked, parallel-group comparison of timolol-LA once daily and timolol maleate ophthalmic solution twice daily in the treatment of adults with glaucoma or ocular hypertension*1. Clin Ther. 2004;26(4):541–551.
  • Netland PA, Robertson SM, Sullivan EK, et al. Response to travoprost in black and nonblack patients with open-angle glaucoma or ocular hypertension. Adv Ther. 2003;20(3):149–163.
  • Netland PA, Landry T, Sullivan EK, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(4):472–484.
  • Mansberger SL, Hughes BA, Gordon MO, et al. Comparison of initial intraocular pressure response with topical β-adrenergic antagonists and prostaglandin analogues in African American and white individuals in the ocular hypertension treatment study. Arch Ophthal. 2007;125(4):454–459.
  • Guglielmi P, Carradori S, Campestre C, et al. Novel therapies for glaucoma: a patent review (2013-2019). Expert Opin Ther Pat. 2019;29(10):769–780.
  • Supuran CT. The management of glaucoma and macular degeneration. Expert Opin Ther Pat. 2019;29(10):745–747.
  • Schehlein EM, Robin AL. Rho-associated kinase inhibitors: evolving strategies in glaucoma treatment. Drugs. 2019;79(10):1031–1036.
  • Terao E, Nakakura S, Fujisawa Y, et al. Time course of conjunctival hyperemia induced by a rho-kinase inhibitor anti-glaucoma eye drop: ripasudil 0.4. Curr Eye Res. 2017;42(5):738–742.
  • Lewis RA, Levy B, Ramirez N, et al. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100(3):339–344.
  • Agorastos A, Huber CG. The role of melatonin in glaucoma: implications concerning pathophysiological relevance and therapeutic potential. J Pineal Res. 2011;50(1):1–7.
  • Zhong Y, Yang Z, Huang W-C, et al. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta. 2013;1830(4):2882–2890.
  • Nucci C, Bari M, Spanò A, et al. Potential roles of (endo)cannabinoids in the treatment of glaucoma: from intraocular pressure control to neuroprotection. Prog Brain Res. 2008;173:451–464.
  • Martínez-Águila A, Fonseca B, Bergua A, et al. Melatonin analogue agomelatine reduces rabbit’s intraocular pressure in normotensive and hypertensive conditions. Eur J Pharmacol. 2013;701(1–3):213–217.
  • Myers JS, Sall KN, DuBiner H, et al. A dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of 2 and 4 weeks of twice-daily ocular trabodenoson in adults with ocular hypertension or primary open-angle glaucoma. J Ocul Pharmacol Ther. 2016;32(8):555–562.
  • Garhöfer G, Schmetterer L. Nitric oxide: a drug target for glaucoma revisited. Drug Discov Today. 2019;24(8):1614–1620.
  • Conlon R, Saheb H, Ahmed IIK. Glaucoma treatment trends: a review. Can J Ophthalmol. 2017;52(1):114–124.
  • Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial. Lancet. 2019;393(10180):1505–1516.
  • Samples JR, Singh K, Lin SC, et al. Laser trabeculoplasty for open-angle glaucoma: a report by the american academy of ophthalmology. Ophthalmology. 2011;118(11):2296–2302.
  • The Glaucoma Laser Trial (GLT) and glaucoma laser trial follow-up study: 7. Results. glaucoma laser trial research group. Am J Ophthalmol. 1995;120(6):718–731.
  • Damji KF, Shah KC, Rock WJ, et al. Selective laser trabeculoplasty vargon laser trabeculoplasty: a prospective randomised clinical trial. Br J Ophthalmol. 1999;83(6):718–722.
  • Ang M, Tham CC, Sng CCA. Selective laser trabeculoplasty as the primary treatment for open angle glaucoma: time for change? Eye. 2019. DOI:10.1038/s41433-019-0625-6
  • Goldenfeld M, Melamed S, Simon G, et al. Titanium:sapphire laser trabeculoplasty versus argon laser trabeculoplasty in patients with open-angle glaucoma. Ophthalmic Surg Lasers Imaging. 2009;40:264–269.
  • Tsang S, Cheng J, Lee JWY. Developments in laser trabeculoplasty. Br J Ophthalmol. 2016;100:94–97.
  • Turati M, Gil-Carrasco F, Morales A, et al. Patterned laser trabeculoplasty. Ophthalmic Surg Lasers Imaging. 2010;41:538–545.
  • Barbu CE, Rasche W, Wiedemann P, et al. [Pattern laser trabeculoplasty and argon laser trabeculoplasty for treatment of glaucoma]. Ophthalmologe. 2014;111:948–953.
  • Lusthaus J, Goldberg I. Current management of glaucoma. Med J Aust. 2019;210:180–187.
  • He M, Jiang Y, Huang S, et al. Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomised controlled trial. Lancet. 2019;393:1609–1618.
  • Musch DC, Gillespie BW, Lichter PR, et al. Visual field progression in the collaborative initial glaucoma treatment study the impact of treatment and other baseline factors. Ophthalmology. 2009;116:200–207.
  • Musch DC, Gillespie BW, Niziol LM, et al. Intraocular pressure control and long-term visual field loss in the collaborative initial glaucoma treatment study. Ophthalmology. 2011;118:1766–1773.
  • Fan Gaskin JC, Sandhu SS, Walland MJ. Victorian trabeculectomy audit. Clin Experiment Ophthalmol. 2017;45:695–700.
  • Debnath SC, Teichmann KD, Salamah K. Trabeculectomy versus trabeculotomy in congenital glaucoma. Br J Ophthalmol. 1989;73:608–611.
  • O’Connor J, Ang GS, Fan Gaskin JC, et al. Wound healing modulation in glaucoma filtration surgery–conventional practices and new Perspectives: the role of antifibrotic agents (part I). J Curr Glaucoma Pract. 2014;8:37–45.
  • Chen CW. Enhanced intraocular pressure controlling effectiveness of trabeculectomy by local application of mitomycin-C. Trans Asia Pac Acad Ophthalmol. 1983;9:172–177.
  • Gressel MG, Parrish RK 2nd, Folberg R. 5-fluorouracil and glaucoma filtering surgery: I. An animal model. Ophthalmology. 1984;91:378–383.
  • Loon SC, Chew PT. A major review of antimetabolites in glaucoma therapy. Ophthalmologica. 1999;213:234–245.
  • Crowston JG, Chang LH, Constable PH, et al. Apoptosis gene expression and death receptor signaling in mitomycin-C–treated human tenon capsule fibroblasts. Invest Ophthalmol Vis Sci. 2002;43:692–699.
  • Khaw PT, Doyle JW, Sherwood MB, et al. Prolonged localized tissue effects from 5-minute exposures to fluorouracil and mitomycin C. Arch Ophthalmol. 1993;111:263–267.
  • Wilkins M Indar A Wormald. Intraoperative mitomycin C for glaucoma surgery. Cochrane Database Syst Rev. 2005; Art. No.: CD002897. DOI:10.1002/14651858.CD002897.pub2.
  • Cheng J-W, Cai J-P, Li Y, et al. Intraoperative mitomycin C for nonpenetrating glaucoma surgery: a systematic review and meta-analysis. J Glaucoma. 2011;20:322–326.
  • Costa V. Efficacy and safety of adjunctive mitomycin C during ahmed glaucoma valve implantation*1A prospective randomized clinical trial. Ophthalmology. 2004;111:1071–1076.
  • Alvarado JA, Hollander DA, Juster RP, et al. Ahmed valve implantation with adjunctive mitomycin C and 5-fluorouracil: long-term outcomes. Am J Ophthalmol. 2008;146:276–284.
  • Membrey WL, Poinoosawmy DP, Bunce C, et al. Glaucoma surgery with or without adjunctive antiproliferatives in normal tension glaucoma: 1 intraocular pressure control and complications. Br J Ophthalmol. 2000;84:586–590.
  • Kaburaki T, Koshino T, Kawashima H, et al. Initial trabeculectomy with mitomycin C in eyes with uveitic glaucoma with inactive uveitis. Eye. 2009;23:1509–1517.
  • Gedde SJ, Schiffman JC, Feuer WJ, et al. Treatment outcomes in the tube versus trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 2012;153:789–803.e2.
  • Bovee CE, Pasquale LR. Evolving surgical interventions in the treatment of glaucoma. Semin Ophthalmol. 2017;32:91–95.
  • Chaudhary A, Salinas L, Guidotti J, et al. a new surgical approach in glaucoma. Expert Rev Med Devices. 2018;15:47–59.
  • Belovay GW, Naqi A, Chan BJ, et al. Using multiple trabecular micro-bypass stents in cataract patients to treat open-angle glaucoma. J Cataract Refract Surg. 2012;38:1911–1917.
  • Kerr NM, Wang J, Barton K. Minimally invasive glaucoma surgery as primary stand-alone surgery for glaucoma. Clin Experiment Ophthalmol. 2017;45:393–400.
  • Reiss G, Clifford B, Vold S, et al. Safety and effectiveness of CyPass supraciliary micro-stent in primary open-angle glaucoma: 5-year results from the COMPASS XT study. Am J Ophthalmol. 2019;208:219–225.
  • Lavia C, Dallorto L, Maule M, et al. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: A systematic review and meta-analysis. PLoS One. 2017;12:e0183142.
  • Craven ER, Katz LJ, Wells JM, et al. Cataract surgery with trabecular micro-bypass stent implantation in patients with mild-to-moderate open-angle glaucoma and cataract: two-year follow-up. J Cataract Refract Surg. 2012;38:1339–1345.
  • Vold SD, Voskanyan L, Tetz M, et al. Newly diagnosed primary open-angle glaucoma randomized to 2 trabecular bypass stents or prostaglandin: outcomes through 36 months. Ophthalmol Ther. 2016;5:161–172.
  • Musch DC, Gillespie BW, Niziol LM, et al. Factors associated with intraocular pressure before and during 9 years of treatment in the collaborative initial glaucoma treatment study. Ophthalmology. 2008;115:927–933.
  • Armaly MF. On the distribution of applanation pressure. i. statistical features and the effect of age, sex, and family history of glaucoma. Arch Ophthalmol. 1965;73:11–18.
  • Klein BE, Klein R, Linton KL. Intraocular pressure in an American community. The beaver dam eye study. Invest Ophthalmol Vis Sci. 1992;33:2224–2228.
  • Wu SY, Leske MC. Associations with intraocular pressure in the barbados eye study. Arch Ophthalmol. 1997;115:1572–1576.
  • Dimatteo MR, Giordani PJ, Lepper HS, et al. Patient adherence and medical treatment outcomes A meta-analysis published by: lippincott williams & wilkins stable. Med Care. 2002. Available from: http://www.jstor.org/stable/3768145
  • Sleath B, Krishnadas R, Cho M, et al. Patient-reported barriers to glaucoma medication access, use, and adherence in southern India. Indian J Ophthalmol. 2009;57(1):63.
  • Yu A, Welge-Lussen U, Weise S. Assessing the adherence behavior of glaucoma patients to topical eye drops. Patient Prefer Adherence. 2014;17. DOI:10.2147/ppa.s69943
  • Robin A, Grover D. Compliance and adherence in glaucoma management. Indian J Ophthalmol. 2011;59(7):93.
  • McClelland J, Bodle L, Little J-A. Investigation of medication adherence and reasons for poor adherence in patients on long-term glaucoma treatment regimes. Patient Prefer Adherence. 2019;13:431–439.
  • Haynes RB, McDonald HP, Garg AX. Helping patients follow prescribed treatment: clinical applications. J Am Med Assoc. 2002;288(22):2880.
  • Buller AJ, Morgan LH, Hercules BL. Patients prefer once-daily glaucoma drops. Graefes Arch Clin Exp Ophthalmol. 2007;245:293–294.
  • Berdeaux G. Measurement of treatment compliance using a medical device for glaucoma patients associated with intraocular pressure control: a survey. Clin Ophthalmol. 2010;731. DOI:10.2147/OPTH.S11799
  • Thompson AC, Woolson S, Olsen MK, et al. Relationship between electronically measured medication adherence and vision-related quality of life in a cohort of patients with open-angle glaucoma. BMJ Open Ophthalmol. 2018;3(1):e000114.
  • Susanna R, De Moraes CG, Cioffi GA, et al. Why do people (still) go blind from glaucoma? Transl Vis Sci Technol. 2015;4(2):1.
  • MacKean JM, Elkington AR. Compliance with treatment of patients with chronic open-angle glaucoma. Br J Ophthalmol. 1983;67(1):46–49.
  • Friedman DS, Hahn SR, Gelb L, et al. Doctor-patient communication, health-related beliefs, and adherence in glaucoma. Results from the glaucoma adherence and persistency study. Ophthalmology. 2008;115(8):1320–1327.e3.
  • Kazemian P, Lavieri MS, Van Oyen MP, et al. Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods. Ophthalmology. 2018;125(4):569–577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.