Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 7, 2022 - Issue 1
264
Views
0
CrossRef citations to date
0
Altmetric
Review

Personalizing treatments for patients based on cardiovascular phenotyping

Pages 4-16 | Received 18 Jul 2021, Accepted 10 Jan 2022, Published online: 24 Jan 2022

References

  • Virani SS, Alonso A, Benjamin EJ, et al Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–e596.
  • Blackwell DL, Villarroel MA. Tables of summary health statistics for US adults: 2017 National Health Interview Survey. Centers for Disease Control and Prevention; 2018. http://www.cdc.gov/nchs/nhis/SHS/tables.htm.
  • Global Burden of Cardiovascular Diseases Collaboration, Roth GA, Johnson CO, et al. The burden of cardiovascular diseases among US States, 1990-2016. JAMA Cardiol 2018;3(5):375–389.
  • Snyderman R, Meade C, Drake C. Value of Personalized Medicine. JAMA. 2016;315(6):613.
  • Snyderman R, Dreke CD. Personalized health care: unlocking the potential of genomic and precision medicine. J Precis Med. 2015;1:38–41.
  • Naylor S. What’s in a name? THe evolution of P-medicine. J Precis Med. 2015;1:15–29.
  • Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122(9):1302–1315.
  • Bhatnagar A. Environmental determinants of cardiovascular disease. Circ Res. 2017;121(2):162–180.
  • Abdulrahim JW, Kwee LC, Alenezi F, et al Identification of undetected monogenic cardiovascular disorders. J Am Coll Cardiol. 2020;76(7):797–808.
  • Helgadottir A, Thorleifsson G, Manolescu A, et al A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–1493.
  • McPherson R, Pertsemlidis A, Kavaslar N, et al A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–1491.
  • Samani NJ, Erdmann J, Hall AS, et al Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–453.
  • Leopold JA, Maron BA, Loscalzo J. The application of big data to cardiovascular disease: paths to precision medicine. J Clin Invest. 2020;130(1):29–38.
  • Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–1130.
  • Franceschini N, Giambartolomei C, de Vries PS, et al GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat Commun. 2018;9(1):5141.
  • Surendran P, Drenos F, Young R, et al Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;48(10):1151–1161.
  • Levy D, Ehret GB, Rice K, et al Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–687.
  • Evangelou E, Warren HR, Mosen-Ansorena D, et al Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–1425.
  • Warren HR, Evangelou E, Cabrera CP, et al Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49(3):403–415.
  • Doherty A, Smith-Byrne K, Ferreira T, et al GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat Commun. 2018;9(1):5257.
  • Khera AV, Emdin CA, Drake I, et al Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–2358.
  • Taliun D, Harris DN, Kessler Md, et al Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature. 2021;590(7845):290–299.
  • Richard MA, Huan T, Ligthart S, et al DNA methylation analysis identifies loci for blood pressure regulation. Am J Hum Genet. 2017;101(6):888–902.
  • Huang Y, Ollikainen M, Muniandy M, et al Identification, heritability, and relation with gene expression of novel DNA methylation loci for blood pressure. Hypertension. 2020;76(1):195–205.
  • Zeller T, Schurmann C, Schramm K, et al Transcriptome-wide analysis identifies novel associations with blood pressure. Hypertension. 2017;70(4):743–750.
  • Hartman RJG, Kapteijn DMC, Haitjema S, et al Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets. Sci Rep. 2020;10(1):12367.
  • McManus DD, Rong J, Huan T, et al Messenger RNA and MicroRNA transcriptomic signatures of cardiometabolic risk factors. BMC Genomics. 2017;18(1):139.
  • Herrington DM, Mao C, Parker SJ, et al Proteomic architecture of human coronary and aortic atherosclerosis. Circulation. 2018;137(25):2741–2756.
  • Fernandez DM, Rahman AH, Fernandez NF, et al Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25(10):1576–1588.
  • Ho JE, Lyass A, Courchesne P, et al. Protein biomarkers of cardiovascular disease and mortality in the community. J Am Heart Assoc. 2018;7(14). DOI:10.1161/JAHA.117.008108.
  • Benson MD, Yang Q, Ngo D, et al Genetic architecture of the cardiovascular risk proteome. Circulation. 2018;137(11):1158–1172.
  • Lau ES, Paniagua SM, Guseh JS, et al Sex differences in circulating biomarkers of cardiovascular disease. J Am Coll Cardiol. 2019;74(12):1543–1553.
  • Ganz P, Heidecker B, Hveem K, et al Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. 2016;315(23):2532–2541.
  • Unterhuber M, Kresoja KP, Rommel KP, et al Proteomics-Enabled Deep Learning Machine Algorithms Can Enhance Prediction of Mortality. J Am Coll Cardiol. 2021;78(16):1621–1631.
  • Hoogeveen RM, Pereira JPB, Nurmohamed NS, et al Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention. Eur Heart J. 2020;41(41):3998–4007.
  • Mosley JD, Benson MD, Smith JG, et al Probing the virtual proteome to identify novel disease biomarkers. Circulation. 2018;138(22):2469–2481.
  • Ngo D, Sinha S, Shen D, et al Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation. 2016;134(4):270–285.
  • Nayor M, Short MI, Rasheed H, et al Aptamer-based proteomic platform identifies novel protein predictors of incident heart failure and echocardiographic traits. Circ Heart Fail. 2020;13(5):e006749.
  • Egerstedt A, Berntsson J, Smith ML, et al Profiling of the plasma proteome across different stages of human heart failure. Nat Commun. 2019;10(1):5830.
  • Ferreira JP, Verdonschot J, Collier T, et al Proteomic bioprofiles and mechanistic pathways of progression to heart failure. Circ Heart Fail. 2019;12(5):e005897.
  • Adamo L, Yu J, Rocha-Resende C, et al Proteomic signatures of heart failure in relation to left ventricular ejection fraction. J Am Coll Cardiol. 2020;76(17):1982–1994.
  • Tzoulaki I, Castagne R, Boulange CL, et al Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur Heart J. 2019;40(34):2883–2896.
  • Fan Y, Li Y, Chen Y, et al Comprehensive metabolomic characterization of coronary artery diseases. J Am Coll Cardiol. 2016;68(12):1281–1293.
  • Wurtz P, Havulinna AS, Soininen P, et al Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131(9):774–785.
  • Poss AM, Maschek JA, Cox JE, et al Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J Clin Invest. 2020;130(3):1363–1376.
  • Zhang L, Wei TT, Li Y, et al Functional metabolomics characterizes a key role for N-acetylneuraminic acid in coronary artery diseases. Circulation. 2018;137(13):1374–1390.
  • Cheng S, Larson MG, McCabe EL, et al Distinct metabolomic signatures are associated with longevity in humans. Nat Commun. 2015;6(1):6791.
  • Murthy VL, Reis JP, Pico AR, et al Comprehensive metabolic phenotyping refines cardiovascular risk in young adults. Circulation. 2020;142(22):2110–2127.
  • He WJ, Li C, Mi X, et al An untargeted metabolomics study of blood pressure: findings from the Bogalusa Heart Study. J Hypertens. 2020;38(7):1302–1311.
  • Tahir UA, Katz DH, Zhao T, et al Metabolomic profiles and heart failure risk in black adults: insights from the Jackson Heart Study. Circ Heart Fail. 2021;14(1):e007275.
  • Andersson C, Johnson AD, Benjamin EJ, et al 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol. 2019;16(11):687–698.
  • Rose SM S-F, Contrepois K, Moneghetti KJ, et al A longitudinal big data approach for precision health. Nat Med. 2019;25(5):792–804.
  • Contrepois K, Wu S, Moneghetti KJ, et al Molecular choreography of acute exercise. Cell. 2020;181(5):1112–1130 e1116.
  • Katz DH, Tahir UA, Bick AG, et al. Whole genome sequence analysis of the plasma proteome in black adults provides novel insights into cardiovascular disease. Circulation. 2021. DOI:10.1161/CIRCULATIONAHA.121.055117.
  • Ritchie SC, Lambert SA, Arnold M, et al Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. Nat Metab. 2021;3(11):1476–1483.
  • Oqueli E, Hiscock M, Dick R. Clopidogrel resistance. Heart Lung Circ. 2007;16(5):S17–28.
  • Ahmad T, Voora D, Becker RC. The pharmacogenetics of antiplatelet agents: towards personalized therapy?. Nat Rev Cardiol. 2011;8(10):560–571.
  • Collet JP, Hulot JS, Pena A, et al Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009;373(9660):309–317.
  • Mega JL, Close SL, Wiviott SD, et al Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–362.
  • Mega JL, Hochholzer W, Frelinger AL, et al Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA. 2011;306(20):2221–2228.
  • Geisler T, Schaeffeler E, Dippon J, et al CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics. 2008;9(9):1251–1259.
  • Sibbing D, Koch W, Gebhard D, et al Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010;121(4):512–518.
  • Koopmans AB, Braakman MH, Vinkers DJ, et al Meta-analysis of probability estimates of worldwide variation of CYP2D6 and CYP2C19. Transl Psychiatry. 2021;11(1):141.
  • Price MJ, Berger PB, Teirstein PS, et al Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA. 2011;305(11):1097–1105.
  • Pereira NL, Rihal C, Lennon R, et al Effect of CYP2C19 genotype on ischemic outcomes during oral P2Y12 inhibitor therapy: a meta-analysis. JACC Cardiovasc Interv. 2021;14(7):739–750.
  • Wang Y, Meng X, Wang A, et al Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N Engl J Med. 2021;385(27):2520–2530.
  • International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009;360(8):753–764.
  • Zabalza M, Subirana I, Sala J, et al Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart. 2012;98(2):100–108.
  • Cooper-dehoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol. 2016;12(2):110–122.
  • Jorgensen AL, FitzGerald RJ, Oyee J, et al Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One. 2012;7(8):e44064.
  • Cooper GM, Johnson JA, Langaee TY, et al A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008;112(4):1022–1027.
  • Takeuchi F, McGinnis R, Bourgeois S, et al A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5(3):e1000433.
  • Kimmel SE, French B, Kasner SE, et al A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283–2293.
  • Pirmohamed M, Burnside G, Eriksson N, et al A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–2303.
  • Ross S, Nejat S, Pare G. Use of genetic data to guide therapy in arterial disease. J Thromb Haemost. 2015;13(1):S281–289.
  • Wei MY, Ito MK, Cohen JD, et al Predictors of statin adherence, switching, and discontinuation in the USAGE survey: understanding the use of statins in America and gaps in patient education. J Clin Lipidol. 2013;7(5):472–483.
  • SEARCH Collaborative Group, Link E, Parish S, et al. SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med 2008;359(8):789–799.
  • Linskey DW, English JD, Perry DA, et al Association of SLCO1B1 c.521T>C (rs4149056) with discontinuation of atorvastatin due to statin-associated muscle symptoms. Pharmacogenet Genomics. 2020;30(9):208–211.
  • Hopewell JC, Offer A, Haynes R, et al Independent risk factors for simvastatin-related myopathy and relevance to different types of muscle symptom. Eur Heart J. 2020;41(35):3336–3342.
  • Carr DF, Francis B, Jorgensen AL, et al Genomewide association study of statin-induced myopathy in patients recruited using the UK clinical practice research datalink. Clin Pharmacol Ther. 2019;106(6):1353–1361.
  • Zaiou M, El Amri H. Cardiovascular pharmacogenetics: a promise for genomically-guided therapy and personalized medicine. Clin Genet. 2017;91(3):355–370.
  • Nielsen JB, Rom O, Surakka I, et al Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease. Nat Commun. 2020;11(1):6417.
  • Liu J, Lahousse L, Nivard MG, et al Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug-metabolite atlas. Nat Med. 2020;26(1):110–117.
  • Wikoff WR, Frye RF, Zhu H, et al Pharmacometabolomics reveals racial differences in response to atenolol treatment. PLoS One. 2013;8(3):e57639.
  • Rotroff DM, Shahin MH, Gurley SB, et al Pharmacometabolomic assessments of atenolol and hydrochlorothiazide treatment reveal novel drug response phenotypes. CPT Pharmacometrics Syst Pharmacol. 2015;4(11):669–679.
  • Shahin MH, Gong Y, Frye RF, et al. Sphingolipid metabolic pathway impacts thiazide diuretics blood pressure response: insights from genomics, metabolomics, and lipidomics. J Am Heart Assoc. 2017;7(1). DOI:10.1161/JAHA.117.006656.
  • de Oliveira FA, Shahin MH, Gong Y, et al. Novel plasma biomarker of atenolol-induced hyperglycemia identified through a metabolomics-genomics integrative approach. Metabolomics. 2016;12(8). DOI:10.1007/s11306-016-1076-8.
  • Weng L, Gong Y, Culver J, et al. Presence of arachidonoyl-carnitine is associated with adverse cardiometabolic responses in hypertensive patients treated with atenolol. Metabolomics. 2016;12(10). DOI:10.1007/s11306-016-1098-2.
  • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.
  • Guney E, Menche J, Vidal M, et al Network-based in silico drug efficacy screening. Nat Commun. 2016;7(1):10331.
  • Cheng F, Lu W, Liu C, et al A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat Commun. 2019;10(1):3476.
  • Cheng F, Desai RJ, Handy DE, et al Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):2691.
  • Elliott LS, Henderson JC, Neradilek MB, et al Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: a prospective pilot randomized controlled trial. PLoS One. 2017;12(2):e0170905.
  • Aryan Z, Szanto A, Pantazi A, et al Moving genomics to routine care: an initial pilot in acute cardiovascular disease. Circ Genom Precis Med. 2020;13(5):406–416.
  • Antman EM, Cohen M, Bernink PJ, et al The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284(7):835–842.
  • Lloyd-Jones DM, Wilson PW, Larson MG, et al Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol. 2004;94(1):20–24.
  • Abifadel M, Varret M, Rabes JP, et al Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–156.
  • Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34–47.
  • Lehrman MA, Russell DW, Goldstein JL, et al Exon-Alu recombination deletes 5 kilobases from the low density lipoprotein receptor gene, producing a null phenotype in familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1986;83(11):3679–3683.
  • Lehrman MA, Schneider WJ, Sudhof TC, et al Mutation in LDL receptor: alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985;227(4683):140–146.
  • Brooks-Wilson A, Marcil M, Clee SM, et al Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22(4):336–345.
  • Bodzioch M, Orso E, Klucken J, et al The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22(4):347–351.
  • Rust S, Rosier M, Funke H, et al Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22(4):352–355.
  • Schultheiss HP, Fairweather D, Caforio ALP, et al Dilated cardiomyopathy. Nat Rev Dis Primers. 2019;5(1):32.
  • McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121(7):731–748.
  • Haas J, Frese KS, Peil B, et al Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36(18):1123–1135a.
  • Fatkin D, MacRae C, Sasaki T, et al Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341(23):1715–1724.
  • Pugh TJ, Kelly MA, Gowrisankar S, et al The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16(8):601–608.
  • Tobita T, Nomura S, Fujita T, et al Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci Rep. 2018;8(1):1998.
  • Seeger T, Shrestha R, Lam CK, et al A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay. Circulation. 2019;139(6):799–811.
  • Marian AJ. Molecular genetic basis of hypertrophic cardiomyopathy. Circ Res. 2021;128(10):1533–1553.
  • Ho CY, Day SM, Ashley EA, et al Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation. 2018;138(14):1387–1398.
  • Lopes LR, Syrris P, Guttmann OP, et al Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. Heart. 2015;101(4):294–301.
  • Coppini R, Ho CY, Ashley E, et al Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J Am Coll Cardiol. 2014;64(24):2589–2600.
  • James CA, Syrris P, van Tintelen JP, et al The role of genetics in cardiovascular disease: arrhythmogenic cardiomyopathy. Eur Heart J. 2020;41(14):1393–1400.
  • McKoy G, Protonotarios N, Crosby A, et al Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000;355(9221):2119–2124.
  • van Lint FHM, Murray B, Tichnell C, et al Arrhythmogenic right ventricular cardiomyopathy-associated desmosomal variants are rarely de novo. Circ Genom Precis Med. 2019;12(8):e002467.
  • Dietz HC, Cutting GR, Pyeritz RE, et al Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–339.
  • Arnaud P, Milleron O, Hanna N, et al Clinical relevance of genotype-phenotype correlations beyond vascular events in a cohort study of 1500 Marfan syndrome patients with FBN1 pathogenic variants. Genet Med. 2021;23(7):1296–1304.
  • McKusick VA. The cardiovascular aspects of Marfan’s syndrome: a heritable disorder of connective tissue. Circulation. 1955;11(3):321–342.
  • Milewicz DM, Braverman AC, De Backer J, et al Marfan syndrome. Nat Rev Dis Primers. 2021;7(1):64.
  • Pepin M, Schwarze U, Superti-Furga A, et al Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342(10):673–680.
  • Pepin MG, Schwarze U, Rice KM, et al Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med. 2014;16(12):881–888.
  • Loeys BL, Chen J, Neptune ER, et al A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–281.
  • van de Laar IM, Oldenburg RA, Pals G, et al Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43(2):121–126.
  • MacFarlane EG, Parker SJ, Shin JY, et al Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest. 2019;129(2):659–675.
  • Lerner-Ellis JP, Aldubayan SH, Hernandez AL, et al The spectrum of FBN1, TGFbetaR1, TGFbetaR2 and ACTA2 variants in 594 individuals with suspected Marfan syndrome, loeys-dietz syndrome or Thoracic Aortic Aneurysms and Dissections (TAAD). Mol Genet Metab. 2014;112(2):171–176.
  • Bertoli-Avella AM, Gillis E, Morisaki H, et al Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015;65(13):1324–1336.
  • Coady MA, Davies RR, Roberts M, et al Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134(4):361–367.
  • Guo DC, Papke CL, Tran-Fadulu V, et al Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–627.
  • Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg. 2013;2(3):271–279.
  • Giusti B, Sticchi E, De Cario R, et al Genetic bases of bicuspid aortic valve: the contribution of traditional and high-throughput sequencing approaches on research and diagnosis. Front Physiol. 2017;8:612.
  • Chen Q, Kirsch GE, Zhang D, et al Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392(6673):293–296.
  • Brugada J, Campuzano O, Arbelo E, et al Present status of brugada syndrome: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(9):1046–1059.
  • Sarquella-Brugada G, Campuzano O, Arbelo E, et al Brugada syndrome: clinical and genetic findings. Genet Med. 2016;18(1):3–12.
  • Giudicessi JR, Wilde AAM, Ackerman MJ. The genetic architecture of long QT syndrome: a critical reappraisal. Trends Cardiovasc Med. 2018;28(7):453–464.
  • Neira V, Enriquez A, Simpson C, et al Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019;30(12):3068–3078.
  • Southgate L, Machado RD, Graf S, et al Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol. 2020;17(2):85–95.
  • Graf S, Haimel M, Bleda M, et al Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun. 2018;9(1):1416.
  • Bohnen MS, Ma L, Zhu N, et al Loss-of-function ABCC8 mutations in pulmonary arterial hypertension. Circ Genom Precis Med. 2018;11(10):e002087.
  • Eyries M, Coulet F, Girerd B, et al ACVRL1 germinal mosaic with two mutant alleles in hereditary hemorrhagic telangiectasia associated with pulmonary arterial hypertension. Clin Genet. 2012;82(2):173–179.
  • Eyries M, Montani D, Girerd B, et al Familial pulmonary arterial hypertension by KDR heterozygous loss of function. Eur Respir J. 2020;55(4):1902165.
  • Zhu N, Swietlik EM, Welch CL, et al Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med. 2021;13(1):80.
  • Swietlik EM, Greene D, Zhu N, et al. Bayesian inference associates rare KDR variants with specific phenotypes in pulmonary arterial hypertension. Circ Genom Precis Med; 2020.
  • Newman JH, Wheeler L, Lane KB, et al Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med. 2001;345(5):319–324.
  • Eyries M, Montani D, Girerd B, et al EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014;46(1):65–69.
  • Hadinnapola C, Bleda M, Haimel M, et al Phenotypic characterization of EIF2AK4 mutation carriers in a large cohort of patients diagnosed clinically with pulmonary arterial hypertension. Circulation. 2017;136(21):2022–2033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.