Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 7, 2022 - Issue 1
45
Views
1
CrossRef citations to date
0
Altmetric
Perspective

Predictors of response for hepatocellular carcinoma immunotherapy: is there anything on the horizon?

&
Pages 50-57 | Received 09 Dec 2021, Accepted 06 May 2022, Published online: 15 May 2022

References

  • Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–1304.
  • Villanueva A, Longo DL. Hepatocellular Carcinoma. N Engl J Med. 2019 Apr 11;380(15):1450–1462. PMID: 30970190.
  • Pfister D, Núñez NG, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021 Apr;592(7854):450–456. Epub 2021 Mar 24. PMID: 33762733; PMCID: PMC8046670.
  • Noonan A, Pawlik TM. Hepatocellular carcinoma: an update on investigational drugs in phase I and II clinical trials. Expert Opin Investig Drugs. 2019 Nov;28(11):941–949. Epub 2019 Oct 12. PMID: 31590579.
  • De Lorenzo S, Tovoli F, Barbera MA, et al. Metronomic capecitabine vs. best supportive care in Child-Pugh B hepatocellular carcinoma: a proof of concept. Sci Rep. 2018 Jul 3;8(1):9997. PMID: 29968763; PMCID: PMC6030080.
  • Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: looking outside the box. J Hepatol. 2020 Feb;72(2):342–352. PMID: 31954496.
  • Rizzo A, Brandi G. Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma. Cancer Treat Res Commun. 2021;27:100328. Epub 2021 Feb 2. PMID: 33549983.
  • Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018 Oct;15(10):599–616. PMID: 30061739.
  • Rizzo A, Ricci AD, Brandi G. Immune-based combinations for advanced hepatocellular carcinoma: shaping the direction of first-line therapy. Future Oncol. 2021 Mar;17(7):755–757. Epub 2021 Jan 29. PMID: 33508960.
  • Reck M. Pembrolizumab as first-line therapy for metastatic non-small-cell lung cancer. Immunotherapy. 2018 Feb;10(2):93–105. Epub 2017 Nov 17. PMID: 29145737.
  • Reck M, Rodríguez-Abreu D, Robinson AG, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019 Mar 1;37(7):537–546. Epub 2019 Jan 8. PMID: 30620668.
  • Paz-Ares L, Spira A, Raben D, et al. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann Oncol. 2020 Mar 21;S0923-7534(20):36374. Epub ahead of print. PMID: 32209338.
  • Ingles Garces AH, Au L, Mason R, et al. Building on the anti-PD1/PD-L1 backbone: combination immunotherapy for cancer. Expert Opin Investig Drugs. 2019 Aug;28(8):695–708. Epub 2019 Aug 6. PMID: 31359805.
  • Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017 Aug 23;8:561. PMID: 28878676; PMCID: PMC5572324.
  • Cheng AL, Hsu C, Chan SL, et al. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 2020 Feb;72(2):307–319. PMID: 31954494.
  • Finkelmeier F, Waidmann O, Trojan J. Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev Anticancer Ther. 2018 Dec;18(12):1169–1175. Epub 2018 Oct 22. PMID: 30304963.
  • Pinter M, Jain RK, Duda DG. The current landscape of immune checkpoint blockade in hepatocellular carcinoma: a review. JAMA Oncol. 2020 Oct 22; Epub ahead of print. PMID: 33090190.
  • Kudo M. Scientific rationale for combined immunotherapy with PD-1/PD-L1 antibodies and VEGF inhibitors in advanced hepatocellular carcinoma. Cancers (Basel). 2020 Apr 27;12(5):1089. PMID: 32349374; PMCID: PMC7281246.
  • Finn RS, Qin S, Ikeda M, et al. IMbrave150 investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020 May 14;382(20):1894–1905. PMID: 32402160.
  • Kelley RK. Atezolizumab plus bevacizumab - A landmark in liver cancer. N Engl J Med. 2020 May 14;382(20):1953–1955. PMID: 32402168.
  • Rizzo A, Ricci AD, Brandi G. Atezolizumab in advanced hepatocellular carcinoma: good things come to those who wait. Immunotherapy. 2021 Jun;13(8):637–644. Epub 2021 Apr 6. PMID: 33820447.
  • Finn RS, Qin S, Ikeda M, et al. IMbrave150: updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021;39(3_suppl):267.
  • Kelley RK, Sangro B, Harris W, et al. Efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J Clin Oncol. 2021 Sep 20;39(27):2991–3001. Epub 2021 Jul 22. PMID: 34292792; PMCID: PMC8445563.
  • Park R, Eshrat F, Al-Jumayli M, et al. Immuno-oncotherapeutic approaches in advanced hepatocellular carcinoma. Vaccines (Basel). 2020 Aug 8;8(3):447. PMID: 32784389; PMCID: PMC7563532.
  • Pinato DJ, Guerra N, Fessas P, et al. Immune-based therapies for hepatocellular carcinoma. Oncogene. 2020 Apr;39(18):3620–3637. Epub 2020 Mar 10. PMID: 32157213; PMCID: PMC7190571.
  • Boilève A, Hilmi M, Delaye M, et al. Biomarkers in hepatobiliary cancers: what is useful in clinical practice? Cancers (Basel). 2021 May 30;13(11):2708. PMID: 34070929; PMCID: PMC8198554.
  • Rizzo A, Dadduzio V, Ricci AD, et al. Lenvatinib plus pembrolizumab: the next frontier for the treatment of hepatocellular carcinoma? Expert Opin Investig Drugs. 2021 Jun;30(1):1–8. Epub ahead of print. PMID: 34167433.
  • Zhang T, Merle P, Wang H, et al. Combination therapy for advanced hepatocellular carcinoma: do we see the light at the end of the tunnel? Hepatobiliary Surg Nutr. 2021 Apr;10(2):180–192. PMID: 33898559; PMCID: PMC8050575.
  • Zayac A, Almhanna K. Hepatobiliary cancers and immunotherapy: where are we now and where are we heading? Transl Gastroenterol Hepatol. 2020 Jan 5;5:8. PMID: 32190776; PMCID: PMC7061229.
  • Sangro B, Sarobe P, Hervás-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021 Apr; 13: 1–19. Epub ahead of print. PMID: 33850328; PMCID: PMC8042636.
  • Houssaini MS, Damou M, Ismaili N. Advances in the management of non-small cell lung cancer (NSCLC): a new practice changing data from asco 2020 annual meeting. Cancer Treat Res Commun. 2020;25:100239. Epub 2020 Nov 14. PMID: 33271494.
  • Ghanem S, Valecha GK, Hossri S, et al. Investigational PD-1 inhibitors for advanced non-small lung cancer: new players in a shifting paradigm. Expert Opin Investig Drugs. 2017 Dec;26(12):1317–1319. Epub 2017 Oct 24. PMID: 29046065.
  • Lamberti G, Andrini E, Sisi M, et al. Beyond EGFR, ALK and ROS1: current evidence and future perspectives on newly targetable oncogenic drivers in lung adenocarcinoma. Crit Rev Oncol Hematol. 2020 Dec;156:103119. Epub 2020 Oct 1. PMID: 33053439.
  • Naso JR, Banyi N, Al-Hashami Z, et al. Discordance in PD-L1 scores on repeat testing of non-small cell lung carcinomas. Cancer Treat Res Commun. 2021;27:100353. Epub 2021 Mar 18. PMID: 33770662.
  • Heimes AS, Schmidt M. Atezolizumab for the treatment of triple-negative breast cancer. Expert Opin Investig Drugs. 2019 Jan;28(1):1–5. Epub 2018 Dec 1. PMID: 30474425.
  • Ilie M, Hofman V, Dietel M, et al. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch. 2016 May;468(5):511–525. Epub 2016 Feb 25. PMID: 26915032.
  • Zhang S, Bai X, Shan F. The progress and confusion of anti-PD1/PD-L1 immunotherapy for patients with advanced non-small cell lung cancer. Int Immunopharmacol. 2020 Mar; 80: 106247. Epub 2020 Jan 31. PMID: 32007710.
  • Lei J, Zhang D, Yao C, et al. Development of a predictive immune-related gene signature associated with hepatocellular carcinoma patient prognosis. Cancer Control. 2020 Jan-Dec;27(1):1073274820977114. PMID: 33269615.
  • Calderaro J, Rousseau B, Amaddeo G, et al. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology. 2016;64(6):2038–2046.
  • Yau T, Park J, Finn R, et al. CheckMate 459, A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2019;30:v874–v875.
  • Zhu AX, Finn RS, Edeline J, et al. KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018 Jul;19(7):940–952.
  • El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017 Jun 24;389(10088):2492–2502. Epub 2017 Apr 20. PMID: 28434648; PMCID: PMC7539326.
  • Macek Jilkova Z, Aspord C, Decaens T. Predictive factors for response to PD-1/PD-L1 checkpoint inhibition in the field of hepatocellular carcinoma: current status and challenges. Cancers (Basel). 2019 Oct 14;11(10):1554. PMID: 31615069; PMCID: PMC6826488.
  • McLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2016 Jan;2(1):46–54.
  • Dodson A, Parry S, Lissenberg-Witte B, et al. External quality assessment demonstrates that PD-L1 22C3 and SP263 assays are systematically different. J Pathol Clin Res. 2020 Apr;6(2):138–145. Epub 2019 Dec 17. PMID: 31849189; PMCID: PMC7164369.
  • Uson Junior PLS, Nagalo BM, Ahn DH, et al. Combination Immunotherapy for Hepatocellular Carcinoma: where are we currently? Semin Liver Dis. 2021 May;41(2):136–141. Epub 2021 May 6. PMID: 33957697.
  • Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019 Feb;51(2):202–206. Epub 2019 Jan 14. PMID: 30643254; PMCID: PMC6365097.
  • Rizzo A, Ricci AD, Brandi G. Recent advances of immunotherapy for biliary tract cancer. Expert Rev Gastroenterol Hepatol. 2021 May;15(5):527–536. Epub 2021 Jan 8. PMID: 33215952.
  • van den Bulk J, Verdegaal EM, de Miranda NF. Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol. 2018 Jun;8(6):180037. PMID: 29875199; PMCID: PMC6030119.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252–264. PMID: 22437870; PMCID: PMC4856023.
  • Merino DM, McShane LM, Fabrizio D, et al. TMB harmonization consortium. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the friends of cancer research TMB harmonization project. J Immunother Cancer. 2020 Mar;8(1):e000147. PMID: 32217756; PMCID: PMC7174078.
  • Shrestha R, Prithviraj P, Anaka M, et al. Monitoring immune checkpoint regulators as predictive biomarkers in hepatocellular carcinoma. Front Oncol. 2018 Jul 13;8:269. PMID: 30057891; PMCID: PMC6053505.
  • Liu L, Bai X, Wang J, et al. Combination of TMB and CNA stratifies prognostic and predictive responses to immunotherapy across metastatic cancer. Clin Cancer Res. 2019 Dec 15;25(24):7413–7423. Epub 2019 Sep 12. PMID: 31515453.
  • Ang C, Klempner SJ, Ali SM, et al. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 2019 Jun 18;10(40):4018–4025. PMID: 31258846; PMCID: PMC6592287.
  • Tang X, Fan L, Chen G, et al. Higher level of tumor mutational burden and 11q13 amplification in Chinese hepatocellular carcinoma patients. Cancer Res. 2018;78(13 Supplement):4349.
  • Wong CN, Fessas P, Dominy K, et al. Qualification of tumour mutational burden by targeted next-generation sequencing as a biomarker in hepatocellular carcinoma. Liver Int. 2020 Oct 23;41(1):192–203. Epub ahead of print. PMID: 33098208.
  • Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018 Apr;122(1):e59. PMID: 29851291; PMCID: PMC6020069.
  • Baretti M, Le DT. DNA mismatch repair in cancer. Pharmacol Ther. 2018 Sep; 189: 45–62. Epub 2018 Apr 15. PMID: 29669262.
  • Chang L, Chang M, Chang HM, et al. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018 Feb;26(2):e15–e21. PMID: 28877075.
  • Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016 Nov;22(11):1342–1350.
  • Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 2019 Jun 13;38(1):255. PMID: 31196207; PMCID: PMC6567914.
  • Svrcek M, Lascols O, Cohen R, et al. MSI/MMR-deficient tumor diagnosis: which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: differences between tumors. Bull Cancer. 2019 Feb;106(2):119–128. Epub 2019 Feb 1. PMID: 30713006.
  • André T, Shiu KK, Kim TW, et al. KEYNOTE-177 Investigators pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020 Dec 3;383(23):2207–2218. PMID: 33264544.
  • Togni R, Bagla N, Muiesan P, et al. Microsatellite instability in hepatocellular carcinoma in non-cirrhotic liver in patients older than 60 years. Hepatol Res. 2009 Mar;39(3):266–273. Epub 2008 Nov 5. PMID: 19054153.
  • Goumard C, Desbois-Mouthon C, Wendum D, et al. Low levels of microsatellite instability at simple repeated sequences commonly occur in human hepatocellular carcinoma. Cancer Genomics Proteomics. 2017 Sep-Oct;14(5):329–339. PMID: 28871000; PMCID: PMC5611519.
  • Rizzo A, Ricci AD, Brandi GP. Hot topics behind the first approval of a targeted therapy in cholangiocarcinoma. Cancer Treat Res Commun. 2021;27:100337. Epub 2021 Feb 18. PMID: 33611090.
  • Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009 Apr 9;458(7239):719–724. PMID: 19360079; PMCID: PMC2821689.
  • Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol. 2018 Jun;15(6):353–365. PMID: 29599476; PMCID: PMC6658089.
  • Harding JJ, Nandakumar S, Armenia J, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 2019 Apr 1;25(7):2116–2126. Epub 2018 Oct 29. PMID: 30373752; PMCID: PMC6689131.
  • de Galarreta M R, Bresnahan E, Molina-Sánchez P, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019 Aug;9(8):1124–1141. Epub 2019 Jun 11. PMID: 31186238; PMCID: PMC6677618.
  • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015 Jul 9;523(7559):231–235. Epub 2015 May 11. PMID: 25970248.
  • von Felden J, Craig AJ, Garcia-Lezana T, et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene. 2021 Jan;40(1):140–151. Epub 2020 Oct 23. PMID: 33097857.
  • Long J, Wang A, Bai Y, et al. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. EBioMedicine. 2019 Apr; 42: 363–374. Epub 2019 Mar 16. PMID: 30885723; PMCID: PMC6491941.
  • Hu ZQ, Xin HY, Luo CB, et al. Associations among the mutational landscape, immune microenvironment, and prognosis in Chinese patients with hepatocellular carcinoma. Cancer Immunol Immunother. 2021 Feb;70(2):377–389. Epub 2020 Aug 6. PMID: 32761426.
  • Yang H, Sun L, Guan A, et al. Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma. Cancer Immunol Immunother. 2021 Mar;70(3):667–677. Epub 2020 Sep 2. PMID: 32876735.
  • O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015 Nov 19;60(4):547–560. PMID: 26590714.
  • Ricci AD, Rizzo A, Brandi G. The DNA damage repair (DDR) pathway in biliary tract cancer (BTC): a new Pandora’s box? ESMO Open. 2020 Sep;5(5):e001042. PMID: 32994319; PMCID: PMC7526276.
  • Arora S, Velichinskii R, Lesh RW, et al. Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv Ther. 2019 Oct;36(10):2638–2678. Epub 2019 Aug 13. PMID: 31410780; PMCID: PMC6778545.
  • Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016 Jan;16(1):35–42. Epub 2015 Dec 15. PMID: 26667849.
  • Pilié PG, Tang C, Mills GB, et al. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019 Feb;16(2):81–104. PMID: 30356138.
  • Reisländer T, Groelly FJ, Tarsounas M. DNA damage and cancer immunotherapy: a STING in the tale. Mol Cell. 2020 Oct 1;80(1):21–28. Epub 2020 Aug 17. PMID: 32810436.
  • Zhang Y, Zhang L, Xu Y, et al. Immune-related long noncoding RNA signature for predicting survival and immune checkpoint blockade in hepatocellular carcinoma. J Cell Physiol. 2020 Dec;235(12):9304–9316. Epub 2020 Apr 24. PMID: 32330311.
  • Yuan M, Wang Y, Sun Q, et al. Identification of a nine immune-related lncRNA signature as a novel diagnostic biomarker for hepatocellular carcinoma. Biomed Res Int. 2021 Jan 5;2021:9798231. PMID: 33506049; PMCID: PMC7808810.
  • Peng L, Chen Z, Chen Y, et al. MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers. Cancer Med. 2019 Dec;8(17):7161–7173. Epub 2019 Sep 30. PMID: 31568700; PMCID: PMC6885872.
  • Xu Q, Wang Y, Huang W. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int Immunopharmacol. 2021 Mar; 92: 107333. Epub 2021 Jan 21. PMID: 33486322.
  • Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018 Jan 5;359(6371):104–108. PMID: 29302014; PMCID: PMC6707353.
  • Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018 Jan 5;359(6371):97–103. Epub 2017 Nov 2. PMID: 29097493; PMCID: PMC5827966.
  • Lambring CB, Siraj S, Patel K, et al. Impact of the microbiome on the immune system. Crit Rev Immunol. 2019;39(5):313–328. PMID: 32422014; PMCID: PMC7362776.
  • Gharaibeh RZ, Jobin C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut. 2019 Mar;68(3):385–388. Epub 2018 Dec 8. PMID: 30530851; PMCID: PMC6580757.
  • Zheng Y, Wang T, Tu X, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. 2019 Jul 23;7(1):193. PMID: 31337439; PMCID: PMC6651993.
  • Chung MW, Kim MJ, Won EJ, et al. Gut microbiome composition can predict the response to nivolumab in advanced hepatocellular carcinoma patients. World J Gastroenterol. 2021 Nov 14;27(42):7340–7349. PMID: 34876793; PMCID: PMC8611200.
  • Mao J, Wang D, Long J, et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J Immunother Cancer. 2021 Dec;9(12):e003334. PMID: 34873013.
  • Rizzo A, Ricci AD. PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: how can they assist drug clinical trials? Expert Opin Investig Drugs. 2021 Aug;30(1):1–9. Epub ahead of print. PMID: 34429006.
  • Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med. 2021 Jun 23;13(1):107. PMID: 34162429; PMCID: PMC8220726.
  • Baruch EN, Wang J, Wargo JA. Gut microbiota and antitumor immunity: potential mechanisms for clinical effect. Cancer Immunol Res. 2021 Apr;9(4):365–370. PMID: 34003768.
  • Kim E, Ahn H, Park H. A review on the role of gut microbiota in immune checkpoint blockade therapy for cancer. Mamm Genome. 2021 Mar 30;32(4):223–231. Epub ahead of print. PMID: 33783613.
  • Rizzo A, Ricci AD, Gadaleta-Caldarola G, et al. First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: current management and future challenges. Expert Rev Gastroenterol Hepatol. 2021 Nov;15(11):1245–1251. Epub 2021 Aug 31. PMID: 34431725.
  • Rizzo A, Ricci AD, Brandi G. PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in biliary tract cancer. Cancers (Basel). 2021 Feb 1;13(3):558. PMID: 33535621; PMCID: PMC7867133.
  • Rizzo A, Ricci AD. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond. Expert Opin Investig Drugs. 2021 Nov; 25: 1–7. Epub ahead of print. PMID: 34793275.
  • Rizzo A, Ricci AD, Brandi G. Durvalumab: an investigational anti-PD-L1 antibody for the treatment of biliary tract cancer. Expert Opin Investig Drugs. 2021 Apr;30(4):343–350. Epub 2021 Mar 9. PMID: 33645367.
  • Howard FM, Villamar D, He G, et al. The emerging role of immune checkpoint inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs. 2021 Oct; 11: 1–18. Epub ahead of print. PMID: 34569400.
  • Le Calvez B, Moreau P, Touzeau C. Immune checkpoint inhibitors for the treatment of myeloma: novel investigational options. Expert Opin Investig Drugs. 2021 Sep;30(9):965–973. Epub 2021 Jul 19. PMID: 34253136.
  • Bin Riaz I, Khan AM, Catto JW, et al. Bladder cancer: shedding light on the most promising investigational drugs in clinical trials. Expert Opin Investig Drugs. 2021 Aug;30(8):837–855. Epub 2021 Jul 14. PMID: 34171206.
  • Jadoon Y, Siddiqui MA. Immunotherapy in multiple myeloma. Cancer Treat Res Commun. 2021 Oct 2;29:100468. Epub ahead of print. PMID: 34653747.
  • Rhea LP, Mendez-Marti S, Kim D, et al. Role of immunotherapy in bladder cancer. Cancer Treat Res Commun. 2021;26:100296. Epub 2020 Dec 24. PMID: 33421822.
  • Ricci AD, Rizzo A, Brandi G. Immunotherapy in biliary tract cancer: worthy of a second look. Cancer Control. 2020 Jul-Aug;27(3):1073274820948047. PMID: 32806956; PMCID: PMC7791443.
  • Brown ZJ, Hewitt DB, Pawlik TM. Combination therapies plus transarterial chemoembolization in hepatocellular carcinoma: a snapshot of clinical trial progress. Epub ahead of print. PMID: 34788184. Expert Opin Investig Drugs. 2021 Nov;(25):1–13.
  • Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett. 2020 Feb 1;470:8–17. Epub 2019 Dec 4. PMID: 31811905.
  • Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol. 2018 Sep;15(9):536–554. PMID: 29904153.
  • Agdashian D, ElGindi M, Xie C, et al. The effect of anti-CTLA4 treatment on peripheral and intra-tumoral T cells in patients with hepatocellular carcinoma. Cancer Imm Imm. 2019;68(4):599–608.
  • Rizzo A. The evolving landscape of systemic treatment for advanced hepatocellular carcinoma and biliary tract cancer. Cancer Treat Res Commun. 2021;27:100360. Epub 2021 Mar 23. PMID: 33799005.
  • Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015 Dec;12(12):681–700. Epub 2015 Oct 20. PMID: 26484443.
  • Rizzo A, Ricci AD, Di Federico A, et al. Predictive biomarkers for checkpoint inhibitor-based immunotherapy in hepatocellular carcinoma: where do we stand? Front Oncol. 2021 Dec 17;11:803133. PMID: 34976841; PMCID: PMC8718608.
  • Gnoni A, Licchetta A, Memeo R, et al. Role of BRAF in hepatocellular carcinoma: a rationale for future targeted cancer therapies. Medicina (Kaunas). 2019 Nov 21;55(12):754. PMID: 31766556; PMCID: PMC6956203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.