Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 7, 2022 - Issue 1
688
Views
0
CrossRef citations to date
0
Altmetric
Review

Accelerating precision ophthalmology: recent advances

, , , &
Pages 150-161 | Received 15 May 2022, Accepted 21 Nov 2022, Published online: 22 Dec 2022

References

  • National Research Council Committee on AFfDaNToD. The National Academies Collection: reports funded by National Institutes of Health. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Copyright © 2011 Washington [DC]: National Academies Press [US] National Academy of Sciences. 2011
  • Koenig IR, Fuchs O, Hansen G, et al. What is precision medicine? Eur Respir J. 2017;50(4):1700391.
  • Ginsburg GS, Phillips KA. Precision Medicine: from Science to Value. Health Aff [Millwood]. 2018;37(5):694–701.
  • Moroi SE, Reed DM, Sanders DS, et al. Precision medicine to prevent glaucoma-related blindness. Curr Opin Ophthalmol. 2019;30(3):187. DOI:10.1097/ICU.0000000000000564
  • Thompson AC, Jammal AA, Medeiros FA. A review of deep learning for screening, diagnosis, and detection of glaucoma progression. Transl Vis Sci Technol. 2020;9(2):42.
  • Sunaric Megevand G, Bron AM. Personalising surgical treatments for glaucoma patients. Prog Retin Eye Res. 2021;81:100879.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267.
  • Tham Y-C, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmol. 2014;121(11):2081–2090.
  • Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18(1):39–57.
  • Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–175. DOI:10.1136/bjophthalmol-2018-313173
  • Jonas JB, Aung T, Bourne RR, et al. Glaucoma. Lancet. 2017;390(10108):2183–2193.
  • Raghavendra U, Fujita H, Bhandary SV, et al. Inf Sci. 2018;441:41–49. DOI:10.1016/j.ins.2018.01.051
  • Hemelings R, Elen B, Barbosa-Breda J, et al. Deep learning on fundus images detects glaucoma beyond the optic disc. Sci Rep. 2021;111:2031310.1038/s41598-021-99605-1
  • Han X, Steven K, Qassim A, et al.Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSAAm J Hum Genet202110871204–121610.1016/j.ajhg.2021.05.005
  • Sathya R, Abraham A. Comparison of supervised and unsupervised learning algorithms for pattern classification. Int J Adv Res Artif Intell. 2013;2(2):34–38.
  • Liu B, Pan D, Shuai Z, et al. ECSD-Net: a joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation. Comput Methods Programs Biomed. 2022;213:106530.
  • Mansouri K, Leite MT, Medeiros F, et al. Assessment of rates of structural change in glaucoma using imaging technologies. Eye. 2011;25(3):269–277.
  • Thakoor KA, Koorathota SC, Hood DC, et al. Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in Optical Coherence Tomography Images. IEEE Trans Biomed Eng. 2021;68(8):2456–2466.
  • Lee J, Kim YK, Ha A, et al.Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning ModelSci Rep2020101328010.1038/s41598-020-60277-y
  • Wang M, Shen LQ, Pasquale LR, et al. An Artificial Intelligence Approach to Assess Spatial Patterns of Retinal Nerve Fiber Layer Thickness Maps in Glaucoma. Transl Vis Sci Technol. 2020;9(9):41. DOI:10.1167/tvst.9.9.41
  • Chiang M, Guth D, Pardeshi AA, et al. Glaucoma Expert-Level detection of angle closure in Goniophotographs with Convolutional neural networks: the Chinese American eye study. Am J Ophthalmol. 2021;226:100–107.
  • Yue W, Szymanska M, Hu Y, et al. Measures of disease activity in glaucoma. Biosens Bioelectron. 2022;196:113700.
  • Yousefi S, et al. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol. 2018;193:71–79.
  • Kim HJ, Seo YH, Kim BH. PLoS ONE. 2017a;12(12):e0186738. DOI:10.1371/journal.pone.0186738
  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181. DOI:10.1126/science.1957169
  • Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol. 2018;256(2):259–265.
  • Atlas V The International Agency for the Prevention of Blindness [ Available from: https://www.iapb.org/learn/vision-atlas
  • Harding S, et al. Grading and disease management in national screening for diabetic retinopathy in England and Wales. Diabetic Med. 2003;20(12):965–971. DOI:10.1111/j.1464-5491.2003.01077.x
  • Bergman M, Buysschaert M, Schwarz PE, et al. Diabetes prevention: global health policy and perspectives from the ground. Diabetes Manag [Lond]. 2012;2(4):309–321.
  • Liu J, Gibson E, Ramchal S, et al. Diabetic Retinopathy Screening with Automated Retinal Image Analysis in a Primary Care Setting Improves Adherence to Ophthalmic Care. Ophthalmol Retina. 2021;5(1):71–77. DOI:10.1016/j.oret.2020.06.016
  • Heydon P, Egan C, Bolter L, et al. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol. 2021;105(5):723–728. DOI:10.1136/bjophthalmol-2020-316594
  • Rogers TW, Gonzalez-Bueno J, Garcia Franco R, et al. Evaluation of an AI system for the detection of diabetic retinopathy from images captured with a handheld portable fundus camera: the MAILOR AI study. Eye. 2021;35(2):632–638. DOI:10.1038/s41433-020-0927-8
  • Porwal P, Pachade S, Kamble R, et al. Indian Diabetic Retinopathy Image Dataset [IDRiD]: a Database for Diabetic Retinopathy Screening Research. Data. 2018;3(3):25. DOI:10.3390/data3030025
  • Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digital Health. 2020;2(5):e240–9. DOI:10.1016/S2589-7500(20)30060-1
  • Sarhan MH, Nasseri MA, Zapp D, et al. Machine learning techniques for ophthalmic data processing: a review. IEEE J Biomed Health Inform. 2020;24(12):3338–3350. DOI:10.1109/JBHI.2020.3012134
  • Lei J, Balasubramanian S, Abdelfattah NS, et al. Proposal of a simple optical coherence tomography-based scoring system for progression of age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol. 2017;255(8):1551–1558.
  • Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31. e9. DOI:10.1016/j.cell.2018.02.010
  • Ronneberger O, Fischer P, Brox T. “U-net: convolutional networks for biomedical image segmentation.” International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
  • Lee CS, Tyring AJ, Deruyter NP, et al. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 2017;8(7):3440–3448.
  • Maloca PM, Lee AY, de Carvalho ER, et al. Validation of automated artificial intelligence segmentation of optical coherence tomography images. PLoS ONE. 2019;14(8): e0220063-e. doi:10.1371/journal.pone.0220063.
  • Maloca PM, Müller PL, Lee AY, et al. Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence. Commun Biol. 2021;4(1):170. DOI:10.1038/s42003-021-01697-y
  • Ji Z, Chen Q, Niu S, et al. Beyond retinal layers: a deep voting model for automated geographic atrophy segmentation in SD-OCT images. Transl Vision Sci & Technol. 2018;7(1):1.
  • Saha S, Nassisi M, Wang M, et al. Automated detection and classification of early AMD biomarkers using deep learning. Sci Rep. 2019;9(1):1–9.
  • Zhang G, Fu DJ, Liefers B, et al.Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation studyLancet Digital Health2021310e665–7510.1016/S2589-7500(21)00134-5
  • Liefers B, Taylor P, Alsaedi A, et al. Quantification of key retinal features in early and late age-related macular degeneration using deep learning. Am J Ophthalmol. 2021;226:1–12.
  • Ohno-Matsui K, Shimada N, Yasuzumi K, et al. Long-term development of significant visual field defects in highly myopic eyes. Am J Ophthalmol. 2011;152(2):256–65.e1. DOI:10.1016/j.ajo.2011.01.052
  • Tan T-E, Anees A, Chen C, et al. Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study. Lancet Digital Health. 2021;3(5):e317–29. DOI:10.1016/S2589-7500(21)00055-8
  • Lin D, Xiong J, Liu C, et al.Application of Comprehensive Artificial intelligence Retinal Expert [CARE] system: a national real-world evidence studyLancet Digital Health202138e486–95. DOI:10.1016/S2589-7500(21)00086-8
  • Rim TH, Soh ZD, Tham Y-C, et al. Deep Learning for Automated Sorting of Retinal Photographs. Ophthalmol Retina. 2020;4(8):793–800. DOI:10.1016/j.oret.2020.03.007
  • Appiah AP, Hirose T. Secondary causes of premacular fibrosis. Ophthalmol. 1989;96(3):389–392.
  • Mandal N, Kofod M, Vorum H, et al. Proteomic analysis of human vitreous associated with idiopathic epiretinal membrane. Acta Ophthalmol. 2013;91(4):e333–4. DOI:10.1111/aos.12075
  • Y-C L, Lin K-H, Bair H, et al. Epiretinal membrane detection at the ophthalmologist level using deep learning of optical coherence tomography. Sci Rep. 2020;10(1):8424. DOI:10.1038/s41598-020-65405-2
  • Wang EF, Misra SL, Patel DV. In Vivo confocal microscopy of the human cornea in the assessment of peripheral neuropathy and systemic diseases. BioMed Res Int. 2015;2015:951081.
  • Kwon MS, Carnt NA, Truong NR, et al. Dendritic cells in the cornea during herpes simplex viral infection and inflammation. Surv Ophthalmol. 2018;63(4):565–578. DOI:10.1016/j.survophthal.2017.11.001
  • Fukuda K, Nishida T. Ocular allergic inflammation: interaction between the cornea and conjunctiva. Cornea. 2010;29(Suppl 1):S62–7.
  • Aggarwal S, Kheirkhah A, Cavalcanti BM, et al. Correlation of corneal immune cell changes with clinical severity in dry eye disease: an in vivo confocal microscopy study. Ocul Surf. 2021;19:183–189.
  • Matsumoto Y, Ibrahim OMA. Application of in vivo Confocal Microscopy in Dry Eye Disease. Invest Ophthalmol Vis Sci. 2018;59(14):Des41–des7.
  • Xu F, Qin Y, He W, et al.A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy imagesPLoS ONE2021166e025265310.1371/journal.pone.0252653
  • Chen X, Graham J, Dabbah MA, et al. An automatic tool for quantification of nerve fibers in corneal confocal microscopy images. IEEE Trans Biomed Eng. 2017;64(4):786–794.
  • Williams BM, Borroni D, Liu R, et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia. 2020;63(2):419–430. DOI:10.1007/s00125-019-05023-4
  • Collinson JM, Chanas SA, Hill RE, et al. Corneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6[±] mouse. Invest Ophthalmol Vis Sci. 2004;45(4):1101–1108.
  • Hall LA, Young G, Wolffsohn JS, et al. The influence of corneoscleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52(9):6801–6806.
  • Sakata LM, Lavanya R, Friedman DS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmol. 2008;115(5):769–774. DOI:10.1016/j.ophtha.2007.06.030
  • Skrok MK, Alonso-Caneiro D, Przeździecka-Dołyk J, et al. Comparison of subjective and objective methods of corneoscleral limbus identification from anterior segment optical coherence tomography images. Optom Vis Sci. 2021;98(2):127–136.
  • Godefrooij DA, de Wit GA, Uiterwaal CS, et al. Age-specific Incidence and Prevalence of Keratoconus: a nationwide registration study. Am J Ophthalmol. 2017;175:169–172. . 10.1016/j.ajo.2016.12.015
  • Rabinowitz YS. Keratoconus Survey of Ophthalmology. Surv Ophthalmol. 1998;42(4):297–319.
  • Shetty R, Kundu G, Narasimhan R, et al. Artificial Intelligence Efficiently Identifies Regional Differences in the Progression of Tomographic Parameters of Keratoconic Corneas. J Refract Surg. 2021;37(4):240–248. DOI:10.3928/1081597X-20210120-01
  • Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33(4):157–166. quiz 205. DOI:10.1016/j.clae.2010.04.006.
  • Epidemiology of cataract. Lancet. 1982;1(8286):1392–1393. DOI:10.1016/S0140-6736(82)92506-5
  • Hosoda Y, Miyake M, Meguro A, et al. Keratoconus-susceptibility gene identification by corneal thickness genome-wide association study and artificial intelligence IBM Watson. Commun Biol. 2020;3(1):410. DOI:10.1038/s42003-020-01137-3
  • Aboobaker S, Courtright P. Barriers to Cataract Surgery in Africa: a Systematic Review. Middle East Afr J Ophthalmol. 2016;23(1):145–149.
  • Brant AR, Hinkle J, Shi S, et al.Artificial intelligence in global ophthalmology: using machine learning to improve cataract surgery outcomes at Ethiopian outreachesJ Cataract Refract Surg20214716–1010.1097/j.jcrs.0000000000000407
  • Lhuillier L, Jeancolas AL, Renaudin L, et al. Impact of Ophthalmic Surgeon Experience on Early Postoperative Central Corneal Thickness After Cataract Surgery. Cornea. 2017;36(5):541–545. DOI:10.1097/ICO.0000000000001175
  • Morita S, Tabuchi H, Masumoto H, et al. Real-Time Extraction of Important Surgical Phases in Cataract Surgery Videos. Sci Rep. 2019;9(1):16590.
  • Taylor HR, West SK. The clinical grading of lens opacities. Aust N Z J Ophthalmol. 1989;17(1):81–86.
  • Guo L, Yang J-J, Peng L, et al. A computer-aided healthcare system for cataract classification and grading based on fundus image analysis. Comput Ind. 2015;69(C):72–80.
  • Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading. Comput Methods Programs Biomed. 2016;124:45–57.
  • Cao L, Li H, Zhang Y, et al. Hierarchical method for cataract grading based on retinal images using improved haar wavelet. Inf Fusion. 2019;53:196–208.
  • Pratap T, Kokil P. Efficient network selection for computer-aided cataract diagnosis under noisy environment. Comput Methods Programs Biomed. 2021;200:105927.
  • Bertrand PJ, Jamilloux Y, Ecochard R, et al. Uveitis: Autoimmunity … and beyond. Autoimmun Rev. 2019;18(9):102351. DOI:10.1016/j.autrev.2019.102351
  • Shahab MA, Mir TA, Zafar S. Optimising drug therapy for non-infectious uveitis. Int Ophthalmol. 2019;39(7):1633–1650.
  • Bonacini M, Soriano A, Cimino L, et al. Cytokine profiling in aqueous humor samples from patients with non-infectious uveitis associated with systemic inflammatory diseases. Front Immunol. 2020;11:358.
  • Bhatti U, Akbarali S, Solebo AL, et al. 93 a machine learning approach to classification of uveitis in children using anterior segment OCT images of the eye. Archives of Disease in Childhood. 2019;A36–37.
  • Jackson P. Introduction to Expert Systems. 3rd ed. United Kingdom: Addison Wesley; 1998.
  • Mutawa AM, Alzuwawi MA. Multilayered rule-based expert system for diagnosing uveitis. Artif Intell Med. 2019;99:101691.
  • Shetty DK, Talasila A, Shanbhag S, et al. Current state of artificial intelligence applications in ophthalmology and their potential to influence clinical practice. Cogent Eng. 2021 Jan 1;8(1):1920707. DOI:10.1080/23311916.2021.1920707.