78
Views
1
CrossRef citations to date
0
Altmetric
Review

Promising treatments for muscle wasting in cancer: focus on microRNA

, &
Pages 313-321 | Received 16 May 2016, Accepted 01 Jul 2016, Published online: 15 Jul 2016

References

  • Argilés JM, Busquets S, Stemmler B, et al. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer Nature Publ Group. 2014;14(11):754–762. doi:10.1038/nrc3829.
  • Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol Elsevier Ltd. 2011;12(5):489–495. doi:10.1016/S1470-2045(10)70218-7.
  • Argilés JM, López-Soriano FJ, Toledo M, et al. The cachexia score (CASCO): a new tool for staging cachectic cancer patients. J Cachexia Sarcopenia Muscle. 2011 Jun 15;2(2):87–93.
  • Fearon KCH, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012 Aug 8;16(2):153–166.
  • Dwarkasing JT, Marks DL, Witkamp RF, et al. Hypothalamic inflammation and food intake regulation during chronic illness. Peptides. Elsevier Inc. 2015;77:60–66.
  • Kir S, White JP, Kleiner S, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014 Sep 4;513(7516):100–104.
  • Petruzzelli M, Schweiger M, Schreiber R, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014 Sep 2;20(3):433–447.
  • Pin F, Busquets S, Toledo M, et al. Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations. Oncotarget. 2015 Dec 22;6(41):43202–43215.
  • Penna F, Minero VG, Costamagna D, et al. Anti-cytokine strategies for the treatment of cancer-related anorexia and cachexia. Expert Opin Biol Ther. 2010 Aug;10(8):1241–1250. doi:10.1517/14712598.2010.503773.
  • Mantovani G, Macciò A, Madeddu C, et al. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med (Berl). 2010 Jan;88(1):85–92. doi:10.1007/s00109-009-0547-z.
  • Jatoi A. Anti-inflammatory therapy: exploring exercise, serum-derived bovine immunoglobulin/protein isolates, and ruxolitinib for the cancer-associated weight loss syndrome. Curr Opin Support Palliat Care. 2013 Dec;7(4):339–341. doi:10.1097/SPC.0000000000000014.
  • Wiedenmann B, Malfertheiner P, Friess H, et al. A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J Support Oncol. 2008 Jan;6(1):18–25.
  • Muscaritoli M, Molfino A, Lucia S, et al. Cachexia: a preventable comorbidity of cancer. TARGET Approach Crit Rev Oncol Hematol. 2015 May;94(2):251–259. doi:10.1016/j.critrevonc.2014.10.014.
  • Temel JS, Abernethy AP, Currow DC, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016 Apr;17(4):519–531. doi:10.1016/S1470-2045(15)00558-6.
  • Garcia JM, Boccia RV, Graham CD, et al. Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol. 2015 Jan;16(1):108–116. doi:10.1016/S1470-2045(14)71154-4.
  • Kabata P, Jastrzębski T, Kąkol M, et al. Preoperative nutritional support in cancer patients with no clinical signs of malnutrition–prospective randomized controlled trial. Support Care Cancer. 2015 Feb;23(2):365–370. doi:10.1007/s00520-014-2363-4.
  • Faber J, Uitdehaag MJ, Spaander M, et al. Improved body weight and performance status and reduced serum PGE2 levels after nutritional intervention with a specific medical food in newly diagnosed patients with esophageal cancer or adenocarcinoma of the gastro-esophageal junction. J Cachexia Sarcopenia Muscle. 2015 Mar;6(1):32–44. doi:10.1002/jcsm.12009.
  • Lundholm K, Körner U, Gunnebo L, et al. Insulin treatment in cancer cachexia: effects on survival, metabolism, and physical functioning. Clin Cancer Res. 2007 May 1;13(9):2699–2706.
  • Dobs AS, Boccia RV, Croot CC, et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013 Apr;14(4):335–345. doi:10.1016/S1470-2045(13)70055-X.
  • Greig CA, Johns N, Gray C, et al. Phase I/II trial of formoterol fumarate combined with megestrol acetate in cachectic patients with advanced malignancy. Support Care Cancer. 2014 May;22(5):1269–1275. doi:10.1007/s00520-013-2081-3.
  • Engelen MPKJ, van der Meij BS, Deutz NEP. Protein anabolic resistance in cancer: does it really exist? Curr Opin Clin Nutr Metab Care. 2016 Jan;19(1):39–47. doi:10.1097/MCO.0000000000000236.
  • Suzuki H, Asakawa A, Amitani H, et al. Cancer cachexia pathophysiology and translational aspect of herbal medicine. Jpn J Clin Oncol. 2013 Jul;43(7):695–705. doi:10.1093/jjco/hyt075.
  • Grande AJ, Silva V, Maddocks M. Exercise for cancer cachexia in adults: executive summary of a Cochrane Collaboration systematic review. J Cachexia Sarcopenia Muscle. 2015;6(3):208–211. doi:10.1002/jcsm.12055.
  • Courneya KS, McKenzie DC, Mackey JR, et al. Effects of exercise dose and type during breast cancer chemotherapy: multicenter randomized trial. J Natl Cancer Inst. 2013 Dec 4;105(23):1821–1832.
  • Zampieri S, Mosole S, Löfler S, et al. physical exercise in aging: nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people. Eur J Transl Myol. 2015 Aug 24;25(4):237–242.
  • Das SK, Eder S, Schauer S, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science. 2011 Jul 8;333(6039):233–238.
  • Kir S, Komaba H, Garcia AP, et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 2015 Dec 9;23(2):315–323.
  • Talbert EE, Guttridge DC. Impaired regeneration: a role for the muscle microenvironment in cancer cachexia. Semin Cell Dev Biol Elsevier Ltd. 2016 Jun;54:82–91. doi:10.1016/j.semcdb.2015.09.009.
  • Penna F, Costamagna D, Fanzani A, et al. Muscle wasting and impaired Myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One. 2010 Oct 27;5(10):e13604.
  • He WA, Berardi E, Cardillo VM, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest. 2013 Nov;123(11):4821–4835. doi:10.1172/JCI68523.
  • Prado CMM, Bekaii-Saab T, Doyle LA, et al. Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br J Cancer. 2012 May 8;106(10):1583–1586. doi:10.1038/bjc.2012.144.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan;136(2):215–233. doi:10.1016/j.cell.2009.01.002.
  • Lee C-T, Risom T, Strauss WM. Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol. 2007;26(4):209–218. doi:10.1089/dna.2006.0545.
  • Camargo RG, Quintas Teixeira Ribeiro H, Geraldo MV, et al. Cancer cachexia and microRNAs. Mediators Inflamm. 2015;2015:367561. doi:10.1155/2015/125380.
  • van Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009 Nov;17(5):662–673. doi:10.1016/j.devcel.2009.10.013.
  • Ma G, Wang Y, Li Y, et al. MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci. 2015;11:345–352. doi:10.7150/ijbs.10921.
  • Mitchelson KR. Roles of the canonical myomiRs miR-1, −133 and −206 in cell development and disease. World J Biol Chem. 2015;6(3):162. doi:10.4331/wjbc.v6.i3.162.
  • Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241–247. doi:10.1261/rna.7240905.
  • van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008;24(4):159–166. doi:10.1016/j.tig.2008.01.007.
  • Hak KK, Yong SL, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006;174(5):677–687. doi:10.1083/jcb.200603008.
  • Chen J-F, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228–233. doi:10.1038/ng1725.
  • Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–220. doi:10.1038/nature03934.
  • Rao PK, Kumar RM, Farkhondeh M, et al. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006;103(23):8721–8726. doi:10.1073/pnas.0602831103.
  • Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129(2):303–317. doi:10.1016/j.cell.2007.03.030.
  • Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–3254. doi:10.1101/gad.1613608.
  • Ai J, Zhang R, Gao X, et al. Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly. Cardiovasc Res. 2012;95(3):385–393. doi:10.1093/cvr/cvs164.
  • Zhang Y, Sun L, Zhang Y, et al. Overexpression of microRNA-1 Causes Atrioventricular Block in Rodents. Int J Biol Sci. 2013;9(5):455–462. doi:10.7150/ijbs.4630.
  • Liu S, Wu H-J, Zhang Z-Q, et al. L-carnitine ameliorates cancer cachexia in mice by regulating the expression and activity of carnitine palmityl transferase. Cancer Biol Ther. 2011 Jul;12(2):125–130. doi:10.4161/cbt.12.12.18141.
  • Deng Z, Chen J-F, Wang D-Z. Transgenic overexpression of miR-133a in skeletal muscle. BMC Musculoskelet Disord. BioMed Central Ltd. 2011;12(1):115.
  • Liu N, Williams AH, Maxeiner JM, et al. MicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest. 2012;122(6):2054–2065. doi:10.1172/JCI57313.
  • Boettger T, Wüst S, Nolte H, et al. The miR-206/133b cluster is dispensable for development, survival and regeneration of skeletal muscle. Skelet Muscle. 2014;4(1):23. doi:10.1186/s13395-014-0023-5.
  • McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol. 2007;102(1):306–313. doi:10.1152/japplphysiol.00932.2006.
  • Katta A, Thulluri S, Manne NDPK, et al. Overload induced heat shock proteins (HSPs), MAPK and miRNA (miR-1 and miR133a) response in insulin-resistant skeletal muscle. Cell Physiol Biochem. 2013;31:219–229. doi:10.1159/000350087.
  • Kukreti H, Amuthavalli K, Harikumar A, et al. Muscle-specific MicroRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem. 2013;288(9):6663–6678. doi:10.1074/jbc.M112.390369.
  • Gambardella S, Rinaldi F, Lepore SM, et al. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med. 2010;8:48. doi:10.1186/1479-5876-8-72.
  • Lewis A, Riddoch-Contreras J, Natanek SA, et al. Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax. 2012;67(1):26–34. doi:10.1136/thoraxjnl-2012-201768.
  • Georgantas RW, Streicher K, Greenberg SA, et al. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol. 2014;66(4):1022–1033. doi:10.1002/art.38292.
  • Soares RJ, Cagnin S, Chemello F, et al. Involvement of miRNAs in the Regulation of Muscle Wasting during Catabolic Conditions. J Biol Chem. 2014;289(32):21909–21925. doi:10.1074/jbc.M114.561845.
  • Chacon-Cabrera A, Fermoselle C, Salmela I, et al. MicroRNA expression and protein acetylation pattern in respiratory and limb muscles of Parp-1-/- and Parp-2-/- mice with lung cancer cachexia. Biochim Biophys Acta Gen Subj Elsevier BV. 2015;1850(12):2530–2543. doi:10.1016/j.bbagen.2015.09.020.
  • Dey BK, Gagan J, Dutta A. miR-206 and −486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol. 2011;31(1):203–214. doi:10.1128/MCB.01009-10.
  • Crippa S, Cassano M, Messina G, et al. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol. 2011;193(7):1197–1212. doi:10.1083/jcb.201011099.
  • Guess MG, Barthel KKB, Harrison BC, et al. miR-30 family microRNAs regulate myogenic differentiation and provide negative feedback on the microRNA pathway. PLoS One. 2015 Feb 17;10(2):e0118229. doi:10.1371/journal.pone.0118229.
  • Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009;5(6):816–823. doi:10.4161/auto.9064.
  • Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia. 2012;26(8):1752–1760. doi:10.1038/leu.2012.65.
  • Penna F, Costamagna D, Pin F, et al. Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol Elsevier. 2013;182(4):1367–1378. doi:10.1016/j.ajpath.2012.12.023.
  • He WA, Calore F, Londhe P, et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci U S A. 2014;111(12):4525–4529. doi:10.1073/pnas.1402714111.
  • Kulyté A, Lorente-Cebrián S, Gao H, et al. MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. Am J Physiol Endocrinol Metab. 2014;306:E267–74. doi:10.1152/ajpendo.00249.2013.
  • Drescher C, Konishi M, Ebner N, et al. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle. 2015;6(4):303–311. doi:10.1002/jcsm.12082.
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518. doi:10.1073/pnas.0804549105.
  • Tasca E, Pegoraro V, Merico A, et al. Circulating microRNAs as biomarkers of muscle differentiation and atrophy in ALS. Clin Neuropathol. 2016;35(1):22–30. doi:10.5414/NP300889
  • Cacchiarelli D, Legnini I, Martone J, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med. 2011;3(5):258–265. doi:10.1002/emmm.201100133.
  • Donaldson A, Natanek SA, Lewis A, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 2013;68(12):1140–1149. doi:10.1136/thoraxjnl-2012-203129.
  • Yang Y, Li Y, Chen X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med. 2016 Jun;94(6):711–724. doi:10.1007/s00109-016-1387-2.
  • Zhang J, Li S, Li L, et al. Exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinf. 2015;13:17–24. doi:10.1016/j.gpb.2015.02.001.
  • Nasser MW, Datta J, Nuovo G, et al. Down-regulation of Micro-RNA-1 (miR-1) in Lung Cancer. J Biol Chem. 2008;283(48):33394–33405. doi:10.1074/jbc.M804788200.
  • Yoshino H, Chiyomaru T, Enokida H, et al. The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer Nat Publ Group. 2011;104(5):808–818.
  • Taulli R, Bersani F, Foglizzo V, et al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest. 2009;119(8):2366–2378.
  • Larrea E, Sole C, Manterola L, et al. New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies. Int J Mol Sci. 2016;17(5):627. doi:10.3390/ijms17050627.
  • Tsukasa K, Ding Q, Miyazaki Y, et al. miR-30 family promotes migratory and invasive abilities in CD133+ pancreatic cancer stem-like cells. Hum Cell Springer Jpn. 2016. [Epub ahead of print].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.