529
Views
16
CrossRef citations to date
0
Altmetric
Articles

Spatial organization of thylakoid network in higher plants

ORCID Icon, & ORCID Icon
Pages 326-343 | Received 14 Dec 2018, Accepted 17 Apr 2019, Published online: 27 May 2019

References

  • Adam, Z., D. Charuvi, O. Tsabari, R. R. Knopf, and Z. Reich. 2011. “Biogenesis of Thylakoid Networks in Angiosperms: Knowns and Unknowns.” Plant Molecular Biology 76: 221–234. doi:10.1007/s11103-010-9693-5.
  • Albertsson, P. 2001. “A Quantitative Model of the Domain Structure of the Photosynthetic Membrane.” Trends in Plant Sciences 6: 349–358. doi:10.1016/S1360-1385(01)02021-0.
  • Anderson, J. M., P. Horton, E. H. Kim, and W. S. Chow. 2012. “Towards Elucidation of Dynamic Structural Changes of Plant Thylakoid Architecture.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367: 3515–3524. doi:10.1098/rstb.2012.0373.
  • Armbruster, U., M. Labs, M. Pribil, S. Viola, W. Xu, M. Scharfenberg, A. P. Hertle, et al. 2013. “Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane CURVATURE.” The Plant Cell 25 (7): 2661–2678. doi:10.1105/tpc.113.113118.
  • Arvidsson, P.-O., and C. Sundby. 1999. “A Model for the Topology of the Chloroplast Thylakoid Membrane.” Functional Plant Biology 26 (7): 687–694. doi:10.1071/pp99072.
  • Austin, J. R., 2nd, E. Frost, P. A. Vidi, F. Kessler, and L. A. Staehelin. 2006. “Plastoglobules are Lipoprotein Subcompartments of the Chloroplast that are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes.” The Plant Cell 18 (7): 1693–1703. doi:10.1105/tpc.105.039859.
  • Austin, J. R., 2nd, and L. A. Staehelin. 2011. “Three-Dimensional Architecture of Grana and Stroma Thylakoids of Higher Plants as Determined by Electron Tomography.” Plant Physiology 155 (4): 1601–1611. doi:10.1104/pp.110.170647.
  • Blomqvist, L. A., M. Ryberg, and C. Sundqvist. 2008. “Proteomic Analysis of Highly Purified Prolamellar Bodies Reveals Their Significance in Chloroplast Development.” Photosynthesis Research 96 (1): 37–50. doi:10.1007/s11120-007-9281-y.
  • Böddi, B., A. Lindsten, M. Ryberg, and C. Sundqvist. 1989. “On the Aggregational States of Protochlorophyllide and Its Protein Complexes in Wheat Etioplasts.” Physiologia Plantarum 76: 135–143. doi:10.1111/j.1399-3054.1989.tb05622.x.
  • Bradbeer, J. W. 1971. “Plastid Development in Primary Leaves of Phaseolus Vulgaris. The Effect of Short Blue, Red, Far-Red, and White Light Treatments on Dark-Grown Plants.” Journal of Experimental Botany 22 (2): 382–390. doi:10.1093/jxb/22.2.382.
  • Brangeon, J., and L. Mustárdy. 1979. “Ontogenetic Assembly of Intra-Chloroplastic Lamellae Viewed in 3-Dimension.” Biologie Cellulaire 36: 71–80.
  • Celedon, J. M., and K. Cline. 2013. “Intra-Plastid Protein Trafficking: How Plant Cells Adapted Prokaryotic Mechanisms to the Eukaryotic Condition.” Biochimica Et Biophysica Acta 1833 (2): 341–351. doi:10.1016/j.bbamcr.2012.06.028.
  • Charuvi, D., V. Kiss, R. Nevo, E. Shimoni, Z. Adam, and Z. Reich. 2012. “Gain and Loss of Photosynthetic Membranes during Plastid Differentiation in the Shoot Apex of Arabidopsis.” The Plant Cell 24 (3): 1143–1157. doi:10.1105/tpc.111.094458.
  • Chen, M. Y., G. Y. Zhuo, K. C. Chen, P. C. Wu, T. Y. Hsieh, T. M. Liu, and S. W. Chu. 2014. “Multiphoton Imaging to Identify Grana, Stroma Thylakoid, and Starch inside an Intact Leaf.” BMC Plant Biology 14: 175. doi:10.1186/1471-2229-14-175.
  • Chong, K., and Y. Deng. 2012. “The Three Dimensionality of Cell Membranes: Lamellar to Cubic Membrane Transition as Investigated by Electron Microscopy.” In Methods in Cell Biology 108, Lipids, edited by G. Di Paolo and M. R. Wenk, 319–343. Academic Press. doi:10.1016/b978-0-12-386487-1.00015-8.
  • Chow, W. S., E.-H. Kim, P. Horton, and J. M. Anderson. 2005. “Granal Stacking of Thylakoid Membranes in Higher Plant Chloroplasts: The Physicochemical Forces at Work and the Functional Consequences that Ensue.” Photochemical & Photobiological Sciences 4 (12): 1081. doi:10.1039/b507310n.
  • Danielsson, R., P. A. Albertsson, F. Mamedov, and S. Styring. 2004. “Quantification of Photosystem I and II in Different Parts of the Thylakoid Membrane from Spinach.” Biochimica Et Biophysica Acta 1608 (1): 53–61.
  • Danielsson, R., M. Suorsa, V. Paakkarinen, P. A. Albertsson, S. Styring, E. M. Aro, and F. Mamedov. 2006. “Dimeric and Monomeric Organization of Photosystem II. Distribution of Five Distinct Complexes in the Different Domains of the Thylakoid Membrane.” The Journal of Biological Chemistry 281 (20): 14241–14249. doi:10.1074/jbc.M600634200.
  • Daum, B., D. Nicastro, J. Austin 2nd, J. R. McIntosh, and W. Kuhlbrandt. 2010. “Arrangement of Photosystem II and ATP Synthase in Chloroplast Membranes of Spinach and Pea.” The Plant Cell 22 (4): 1299–1312. doi:10.1105/tpc.109.071431.
  • Dekker, J. P., and E. J. Boekema. 2005. “Supramolecular Organization of Thylakoid Membrane Proteins in Green Plants.” Biochimica Et Biophysica Acta 1706 (1): 12–39. doi:10.1016/j.bbabio.2004.09.009.
  • Deme, B., C. Cataye, M. A. Block, E. Maréchal, and J. Jouhet. 2014. “Contribution of Galactoglycerolipids to the 3-Dimensional Architecture of Thylakoids.” FASEB Journal 28 (8): 3373–3383. doi:10.1096/fj.13-247395.
  • Deng, Y., M. Marko, K. F. Buttle, A. Leith, M. Mieczkowski, and C. A. Mannella. 1999. “Cubic Membrane Structure in Amoeba (Chaos carolinensis) Mitochondria Determined by Electron Microscopic Tomography.” Journal of Structural Biology 127 (3): 231–239. doi:10.1006/jsbi.1999.4147.
  • Deng, Y., and M. Mieczkowski. 1998. “Three-Dimensional Periodic Cubic Membrane Structure in the Mitochondria of Amoebae Chaos carolinensis.” Protoplasma 203 (1–2): 16–25. doi:10.1007/BF01280583.
  • Dietzel, L., and T. Pfannschmidt. 2008. “Photosynthetic Acclimation to Light Gradients in Plant Stands Comes Out of Shade.” Plant Signaling and Behaviour 3 (12): 1116–1118. doi:10.4161/psb.3.12.7038.
  • Engel, B. D., M. Schaffer, L. Kuhn Cuellar, E. Villa, J. M. Plitzko, and W. Baumeister. 2015. “Native Architecture of the Chlamydomonas Chloroplast Revealed by in Situ Cryo-Electron Tomography.” Elife 4: 04889. doi:10.7554/eLife.04889.
  • Franck, F., U. Sperling, G. Frick, B. Pochert, B. van Cleve, K. Apel, and G. A. Armstrong. 2000. “Regulation of Etioplast Pigment-Protein Complexes, Inner Membrane Architecture, and Protochlorophyllide A Chemical Heterogeneity by Light-Dependent NADPH: Protochlorophyllideoxidoreductases A and B.” Plant Physiology 124 (4): 1678–1696.
  • Fujii, S., K. Kobayashi, N. Nagata, T. Masuda, and H. Wada. 2017. “Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts.” Plant Physiology 174 (4): 2183–2198. doi:10.1104/pp.17.00304.
  • Fujii, S., K. Kobayashi, N. Nagata, T. Masuda, and H. Wada. 2018. “Digalactosyldiacylglycerol Is Essential for Organization of the Membrane Structure in Etioplasts.” Plant Physiology 177 (4): 1487–1497. doi:10.1104/pp.18.00227.
  • Garab, G. 2016. “Self-Assembly and Structural–Functional Flexibility of Oxygenic Photosynthetic Machineries: Personal Perspectives.” Photosynthesis Research 127 (1): 131–150. doi:10.1007/s11120-015-0192-z.
  • Garab, G., K. Lohner, P. Laggner, and T. Farkas. 2000. “Self-Regulation of the Lipid Content of Membranes by Non-Bilayer Lipids: A Hypothesis.” Trends in Plant Science 5 (11): 489–494. doi:10.1016/S1360-1385(00)01767-2.
  • Garab, G., B. Ughy, and R. Goss. 2016. “Role of MGDG and Non-Bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes.” In Subcellular Biochemistry 86, Lipids in Plant and Algae Development, edited by Y. Nakamura and Y. Li-Beisson, 127–157. Springer International Publishing. doi:10.1007/978-3-319-25979-6_6.
  • Garcia, C., N. Z. Khan, U. Nannmark, and H. Aronsson. 2010. “The Chloroplast Protein CPSAR1, Dually Localized in the Stroma and the Inner Envelope Membrane, Is Involved in Thylakoid Biogenesis.” The Plant Journal 63 (1): 73–85. doi:10.1111/j.1365-313X.2010.04225.x.
  • Glick, R. E., S. W. McCauley, and A. Melis. 1985. “Effect of Light Quality on Chloroplast-Membrane Organization and Function in Pea.” Planta 164 (4): 487–494. doi:10.1007/BF00395964.
  • Gruszecki, W. I., and K. Strzałka. 2005. “Carotenoids as Modulators of Lipid Membrane Physical Properties.” Biochimica Et Biophysica Acta 1740 (2): 108–115. doi:10.1016/j.bbadis.2004.11.015.
  • Grzyb, J. M., K. Solymosi, K. Strzałka, and B. Myśliwa-Kurdziel. 2013. “Visualization and Characterization of Prolamellar Bodies with Atomic Force Microscopy.” Journal of Plant Physiology 170 (14): 1217–1227. doi:10.1016/j.jplph.2013.04.017.
  • Gugel, I. L., and J. Soll. 2017. “Chloroplast Differentiation in the Growing Leaves of Arabidopsis thaliana.” Protoplasma 254 (5): 1857–1866. doi:10.1007/s00709-016-1057-9.
  • Gunning, B. E. S. 1965. “The Greening Process in Plastids.” Protoplasma 60 (1): 111–130. doi:10.1007/BF01248133.
  • Gunning, B. E. S. 2001. “Membrane Geometry of “Open” Prolamellar Bodies.” Protoplasma 215 (1–4): 4–15.
  • Gunning, B. E. S., and M. P. Jagoe. 1967. “The Prolamellar Body.” In Biochemistry of Chloroplasts, edited by T. W. Goodwin, 655–676. Vol. 2. London: Academic Press.
  • Gunning, B. E. S., and M. W. Steer. 1975. Plant Cell Biology. An Ultrastructural Approach. London: Edward Arnold.
  • Herdean, A., H. Nziengui, O. Zsiros, K. Solymosi, G. Garab, B. Lundin, and C. Spetea. 2016a. “The Arabidopsis Thylakoid Chloride Channel AtCLCe Functions in Chloride Homeostasis and Regulation of Photosynthetic Electron Transport.” Frontiers in Plant Science 7. doi:10.3389/fpls.2016.00115.
  • Herdean, A., E. Teardo, A. K. Nilsson, B. E. Pfeil, O. N. Johansson, R. Ünnep, G. Nagy, et al. 2016b. “A Voltage-Dependent Chloride Channel Fine-Tunes Photosynthesis in Plants.” Nature Communications 7: 11654. doi:10.1038/ncomms11654.
  • Heslop-Harrison, J. 1963. “Structure and Morphogenesis of Lamellar Systems in Grana-Containing Chloroplasts.” Planta 60 (3): 243–260. doi:10.1007/BF01937960.
  • Hind, G., J. S. Wall, Z. Várkonyi, A. Istokovics, P. H. Lambrev, and G. Garab. 2014. “Membrane Crystals of Plant Light-Harvesting Complex II Disassemble Reversibly in Light.” Plant and Cell Physiology 55 (7): 1296–1303. doi:10.1093/pcp/pcu064.
  • Ikeda, T. 1968. “Analytical Studies on Structure of Prolamellar Body.” Botanical Magazine (Tokyo) 81 (965): 517–527. doi:10.15281/jplantres1887.81.517.
  • Iwai, M., M. S. Roth, and K. K. Niyogi. 2018. “Subdiffraction-Resolution Live-Cell Imaging for Visualizing Thylakoid Membranes.” The Plant Journal 96 (1): 233–243. doi:10.1111/tpj.14021.
  • Iwai, M., M. Yokono, K. Kurokawa, A. Ichihara, and A. Nakano. 2016. “Live-Cell Visualization of Excitation Energy Dynamics in Chloroplast Thylakoid Structures.” Scientific Reports 6: 29940. doi:10.1038/srep29940.
  • Iwai, M., M. Yokono, and A. Nakano. 2014. “Visualizing Structural Dynamics of Thylakoid Membranes.” Scientific Reports 4: 3768. doi:10.1038/srep03768.
  • Jakubauskas, D. 2018. “Structural Investigation of Photosynthetic Membrane Using Small-Angle Scattering.” PhD Thesis, Niels Bohr Institute, Faculty of Science, University of Copenhagen.
  • Janssen, P. J., M. D. Lambreva, N. Plumere, C. Bartolucci, A. Antonacci, K. Buonasera, R. N. Frese, V. Scognamiglio, and G. Rea. 2014. “Photosynthesis at the Forefront of a Sustainable Life.” Frontiers in Chemistry 2: 36. doi:10.3389/fchem.2014.00036.
  • Jarvis, P., and E. Lopez-Juez. 2013. “Biogenesis and Homeostasis of Chloroplasts and Other Plastids.” Nature Reviews Molecular Cell Biology 14 (12): 787–802. doi:10.1038/nrm3702.
  • Jilly, R., N. Z. Khan, H. Aronsson, and D. Schneider. 2018. “Dynamin-Like Proteins are Potentially Involved in Membrane Dynamics within Chloroplasts and Cyanobacteria.” Frontiers in Plant Science 9: 206. doi:10.3389/fpls.2018.00206.
  • Jin, X., X. Cao, X. Wang, J. Jiang, J. Wan, J. F. Laliberte, and Y. Zhang. 2018. “Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Plant Virus Replication.” Frontiers in Plant Science 9: 57. doi:10.3389/fpls.2018.00057.
  • Kaftan, D., V. Brumfeld, R. Nevo, A. Scherz, and Z. Reich. 2002. “From Chloroplasts to Photosystems: In Situ Scanning Force Microscopy on Intact Thylakoid Membranes.” EMBO Journal 21 (22): 6146–6153.
  • Kaňa, R., and Govindjee. 2016. “Role of Ions in the Regulation of Light-Harvesting.” Frontiers in Plant Science 7: 1849. doi:10.3389/fpls.2016.01849.
  • Karim, S., M. Alezzawi, C. Garcia-Petit, K. Solymosi, N. Z. Khan, E. Lindquist, P. Dahl, S. Hohmann, and H. Aronsson. 2014. “A Novel Chloroplast Localized Rab GTPase Protein CPRabA5e Is Involved in Stress, Development, Thylakoid Biogenesis and Vesicle Transport in Arabidopsis.” Plant Molecular Biology 84 (6): 675–692. doi:10.1007/s11103-013-0161-x.
  • Kesselmeier, J., and U. Laudenbach. 1986. “Prolamellar-Body Structure, Composition of Molecular Species and Amount of Galactolipids in Etiolated, Greening and Reetiolated Primary Leaves of Oat, Wheat and Rye.” Planta 168 (4): 453–460. doi:10.1007/BF00392264.
  • Kessler, F., D. Schnell, and G. Blobel. 1999. “Identification of Proteins Associated with Plastoglobules Isolated from Pea (Pisum sativum L.) Chloroplasts.” Planta 208 (1): 107–113. doi:10.1007/s004250050540.
  • Khan, N. Z., E. Lindquist, M. Alezzawi, and H. Aronsson. 2017. “Understanding Plastid Vesicle Transport - Could It Provide Benefit for Human Medicine?” Mini-Reviews in Medicinal Chemistry 17 (13): 1128–1139. doi:10.2174/1389557516666160906102221.
  • Khatoon, M., K. Inagawa, P. Pospisil, A. Yamashita, M. Yoshioka, B. Lundin, J. Horie, N. Morita, A. Jajoo, and Y. Yamamoto. 2009. “Quality Control of Photosystem II: Thylakoid Unstacking Is Necessary to Avoid Further Damage to the D1 Protein and to Facilitate D1 Degradation under Light Stress in Spinach Thylakoids.” Journal of Biological Chemistry 284 (37): 25343–25352. doi:10.1074/jbc.M109.007740.
  • Kirchhoff, H. 2018. “Structure-Function Relationships in Photosynthetic Membranes: Challenges and Emerging Fields.” Plant Science 266: 76–82. doi:10.1016/j.plantsci.2017.09.021.
  • Kirchhoff, H., I. Tremmel, W. Haase, and U. Kubitscheck. 2004. “Supramolecular Photosystem II Organization in Grana Thylakoid Membranes: Evidence for a Structured Arrangement.” Biochemistry 43 (28): 9204–9213. doi:10.1021/bi0494626.
  • Kirk, J. T. O., and R. A. E. Tilney Bassett. 1967. The Plastids. Their Chemistry, Structure, Growth and Inheritance. London & San Francisco: WH Freeman & .
  • Klein, S., G. Bryan, and L. Bogorad. 1964. “Early Stages in the Development of Plastid Fine Structure in Red and Far-Red Light.” Journal of Cell Biology 22 (2): 433–442. doi:10.1083/jcb.22.2.433.
  • Kowalewska, Ł., R. Mazur, S. Suski, M. Garstka, and A. Mostowska. 2016. “Three-Dimensional Visualization of the Tubular-Lamellar Transformation of the Internal Plastid Membrane Network during Runner Bean Chloroplast Biogenesis.” The Plant Cell 28 (4): 875–891. doi:10.1105/tpc.15.01053.
  • Kowalewska, Ł., and A. Mostowska. 2016. “Biogenesis of Thylakoid Membranes: Correlation of Structure and Function.” In Handbook of Photosynthesis, edited by M. Pessarakli, 1–15. Third ed. Boca Raton, USA: CRC Press.
  • Kremer, J. R., D. N. Mastronarde, and J. R. McIntosh. 1996. “Computer Visualization of Three-Dimensional Image Data Using IMOD.” Journal of Structural Biology 116 (1): 71–76. doi:10.1006/jsbi.1996.0013.
  • Lebedev, N., B. Van Cleve, G. Armstrong, and K. Apel. 1995. “Chlorophyll Synthesis in A Deetiolated (Det340) Mutant of Arabidopsis without NADPH-protochlorophyllide (Pchlide) Oxidoreductase (POR) A and Photoactive PChlide-F655.” The Plant Cell 7 (12): 2081–2090. doi:10.1105/tpc.7.12.2081.
  • Lee, C. K., C. W. Pao, and B. Smit. 2015. “PSII-LHCII Supercomplex Organizations in Photosynthetic Membrane by Coarse-Grained Simulation.” Journal of Physical Chemistry B 119 (10): 3999–4008. doi:10.1021/jp511277c.
  • Li, J. 1978. “An X-Ray Diffraction Study of Chloroplast Thylakoid Membrane Structure.” PhD Thesis, Harvard University.
  • Liang, Z., N. Zhu, K. K. Mai, Z. Liu, D. Tzeng, K. W. Osteryoung, S. Zhong, L. A. Staehelin, and B. H. Kang. 2018. “Thylakoid-Bound Polysomes and a Dynamin-Related Protein, FZL, Mediate Critical Stages of the Linear Chloroplast Biogenesis Program in Greening Arabidopsis Cotyledons.” The Plant Cell 30 (7): 1476–1495. doi:10.1105/tpc.17.00972.
  • Lichtenthaler, H. K. 1968. “Plastoglobuli and the Fine Structure of Plastids.” Endeavour 27: 144–149.
  • Lindquist, E., K. Solymosi, and H. Aronsson. 2016. “Vesicles are Persistent Features of Different Plastids.” Traffic 17 (10): 1125–1138. doi:10.1111/tra.12427.
  • Makowski, L., and J. Li. 1983. “X-Ray Diffraction and Electron Microscope Studies of the Molecular Structure of Biological Membranes.” In Biomembrane Structure and Function, edited by D. Chapman, 43–166. London: Palgrave Macmillan UK.
  • Mehta, M., V. Sarafis, and C. Critchley. 1999. “Thylakoid Membrane Architecture.” Australian Journal of Plant Physiology 26 (7): 709–716. doi:10.1071/PP99068.
  • Messaoudii, C., T. Boudier, C. O. Sanchez Sorzano, and S. Marco. 2007. “TomoJ: Tomography Software for Three-Dimensional Reconstruction in Transmission Electron Microscopy.” BMC Bioinformatics 8: 288. doi:10.1186/1471-2105-8-288.
  • Mostowska, A. 1986. “Changes Induced on the Prolamellar Body of Pea Seedlings by White, Red and Blue Low Intensity Light.” Protoplasma 131 (2): 166–173. doi:10.1007/BF01285038.
  • Mostowska, A. 1996. “Environmental Factors Affecting Chloroplasts.” In Handbook of Photosynthesis, edited by M. Pessarakli, Second ed., 407–426. Tuscon, AZ: CRC Press.
  • Murakami, S., and L. Packer. 1970. “Protonation and Chloroplast Membrane Structure.” The Journal of Cell Biology 47 (2): 332–351. doi:10.1083/jcb.47.2.332.
  • Mustárdy, L., K. Buttle, G. Steinbach, and G. Garab. 2008. “The Three-Dimensional Network of the Thylakoid Membranes in Plants: Quasihelical Model of the Granum-Stroma Assembly.” The Plant Cell 20 (10): 2552–2557. doi:10.1105/tpc.108.059147.
  • Mysliwa-Kurdziel, B., J. Kruk, and K. Strzalka. 2013. “Protochlorophyllide in Model Systems–An Approach to in Vivo Conditions.” Biophysical Chemistry 175–176: 28–38. doi:10.1016/j.bpc.2013.02.002.
  • Ouazzani-Chahdi, M. A., B. Schoefs, and F. Franck. 1998. “Isolation and Characterization of Photoactive Complexes of NADPH: Protochlorophyllideoxidoreductase from Wheat.” Planta 206 (4): 673–680. doi:10.1007/s004250050446.
  • Paolillo, D. J., Jr. 1970. “The Three-Dimensional Arrangement of Intergranal Lamellae in Chloroplasts.” Journal of Cell Science 6 (1): 243–255.
  • Park, H., S. S. Kreunen, A. J. Cuttriss, D. DellaPenna, and B. J. Pogson. 2002. “Identification of the Carotenoid Isomerase Provides Insight into Carotenoid Biosynthesis, Prolamellar Body Formation, and Photomorphogenesis.” The Plant Cell 14 (2): 321–332.
  • Pogson, B. J., and V. Albrecht. 2011. “Genetic Dissection of Chloroplast Biogenesis and Development: An Overview.” Plant Physiology 155 (4): 1545–1551. doi:10.1104/pp.110.170365.
  • Pogson, B. J., D. Ganguly, and V. Albrecht-Borth. 2015. “Insights into Chloroplast Biogenesis and Development.” Biochimica Et Biophysica Acta 1847 (9): 1017–1024. doi:10.1016/j.bbabio.2015.02.003.
  • Puthiyaveetil, S., B. van Oort, and H. Kirchhoff. 2017. “Surface Charge Dynamics in Photosynthetic Membranes and the Structural Consequences.” Nature Plants 3: 17020. doi:10.1038/nplants.2017.20.
  • Rottet, S., C. Besagni, and F. Kessler. 2015. “The Role of Plastoglobules in Thylakoid Lipid Remodeling during Plant Development.” Biochimica Et Biophysica Acta 1847 (9): 889–899. doi:10.1016/j.bbabio.2015.02.002.
  • Rottet, S., J. Devillers, G. Glauser, V. Douet, C. Besagni, and F. Kessler. 2016. “Identification of Plastoglobules as a Site of Carotenoid Leavage.” Frontiers in Plant Science 7: 1855. doi:10.3389/fpls.2016.01855.
  • Ruban, A. V., and M. P. Johnson. 2015. “Visualizing the Dynamic Structure of the Plant Photosynthetic Membrane.” Nature Plants 1: 15161. doi:10.1038/nplants.2015.161.
  • Rudowska, Ł., K. Gieczewska, R. Mazur, M. Garstka, and A. Mostowska. 2012. “Chloroplast Biogenesis - Correlation between Structure and Function.” Biochimica Et Biophysica Acta 1817 (8): 1380–1387. doi:10.1016/j.bbabio.2012.03.013.
  • Rumak, I., K. Gieczewska, B. Kierdaszuk, W. I. Gruszecki, A. Mostowska, R. Mazur, and M. Garstka. 2010. “3-D Modelling of Chloroplast Structure under (Mg2+) Magnesium Ion Treatment. Relationship between Thylakoid Membrane Arrangement and Stacking.” Biochimica Et Biophysica Acta 1797 (10): 1736–1748. doi:10.1016/j.bbabio.2010.07.001.
  • Rumak, I., R. Mazur, K. Gieczewska, J. Koziol-Lipinska, B. Kierdaszuk, W. P. Michalski, B. J. Shiell, et al. 2012. “Correlation between Spatial (3D) Structure of Pea and Bean Thylakoid Membranes and Arrangement of Chlorophyll-Protein Complexes.” BMC Plant Biology 12: 72. doi:10.1186/1471-2229-12-72.
  • Sadler, D. M., and D. L. Worcester. 1982. “Neutron Scattering Studies of Photosynthetic Membranes in Aqueous Dispersion.” Journal of Molecular Biology 159 (3): 485–499.
  • Sakamoto, W., S. Y. Miyagishima, and P. Jarvis. 2008. “Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance.” The Arabidopsis Book / American Society of Plant Biologists 6: e0110. doi:10.1199/tab.0110.
  • Schoefs, B., and F. Franck. 2008. “The Photoenzymatic Cycle of NADPH: Protochlorophyllide Oxidoreductase in Primary Bean Leaves (Phaseolus vulgaris) during the First Days of Photoperiodic Growth.” Photosynthesis Research 96 (1): 15–26. doi:10.1007/s11120-007-9274-x.
  • Schumann, T., S. Paul, M. Melzer, P. Dörmann, and P. Jahns. 2017. “Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress.” Frontiers in Plant Science 8: 681. doi:10.3389/fpls.2017.00681.
  • Selstam, E., and A. S. Sandelius. 1984. “A Comparison between Prolamellar Bodies and Prothylakoid Membranes of Etioplasts of Dark-Grown Wheat Concerning Lipid and Polypeptide Composition.” Plant Physiology 76 (4): 1036–1040.
  • Selstam, E., J. Schelin, T. Brain, and W. P. Williams. 2002. “The Effects of Low pH on the Properties of Protochlorophyllide Oxidoreductase and the Organization of Prolamellar Bodies of Maize (Zea Mays).” European Journal of Biochemistry 269 (9): 2336–2346.
  • Selstam, E., J. Schelin, W. P. Williams, and A. P. Brain. 2007. “Structural Organisation of Prolamellar Bodies (PLB) Isolated from Zea mays. Parallel TEM, SAXS and Absorption Spectra Measurements on Samples Subjected to Freeze-Thaw, Reduced pH and High-Salt Perturbation.” Biochimica Et Biophysica Acta 1768 (9): 2235–2245. doi:10.1016/j.bbamem.2007.05.005.
  • Selstam, E., and A. Widel-Wigge. 1993. “Chloroplast Lipids and the Assembly of Membranes.” In Pigment–Protein Complexes in Plastids, edited by C. Sundqvist and M. Ryberg, 241–277. San Diego, CA: Academic Press.
  • Shaw, P., J. Henwood, R. Oliver, and T. Griffiths. 1985. “Immunogold Localization of Protochlorophyllide Oxidoreductase in Barley Etioplasts.” European Journal of Cell Biology 39: 50–55.
  • Shimoni, E., O. Rav-Hon, I. Ohad, V. Brumfeld, and Z. Reich. 2005. “Three-Dimensional Organization of Higher-Plant Chloroplast Thylakoid Membranes Revealed by Electron Tomography.” The Plant Cell 17 (9): 2580–2586. doi:10.1105/tpc.105.035030.
  • Skupień, J., J. Wójtowicz, Ł. Kowalewska, R. Mazur, M. Garstka, K. Gieczewska, and A. Mostowska. 2017. “Dark-Chilling Induces Substantial Structural Changes and Modifies Galactolipid and Carotenoid Composition during Chloroplast Biogenesis in Cucumber (Cucumis sativus L.) Cotyledons.” Plant Physiology and Biochemistry 111: 107–118. doi:10.1016/j.plaphy.2016.11.022.
  • Solymosi, K., K. Bóka, and B. Böddi. 2006. “Transient Etiolation: Protochlorophyll(Ide) and Chlorophyll Forms in Differentiating Plastids of Closed and Breaking Leaf Buds of Horse Chestnut (Aesculus hippocastanum).” Tree Physiology 26 (8): 1087–1096.
  • Solymosi, K., J. Lethin, and H. Aronsson. 2018. “Diversity and Plasticity of Plastids in Land Plants.” In Methods in Molecular Biology 1829, Plastids, edited by E. Maréchal, 55–72. Springer Nature. doi:10.1007/978-1-4939-8654-5_4.
  • Solymosi, K., D. Morandi, K. Bóka, B. Böddi, and B. Schoefs. 2012. “High Biological Variability of Plastids, Photosynthetic Pigments and Pigment Forms of Leaf Primordia in Buds.” Planta 235 (5): 1035–1049. doi:10.1007/s00425-011-1559-9.
  • Solymosi, K., B. Mysliwa-Kurdziel, K. Boka, K. Strzalka, and B. Boddi. 2006. “Disintegration of the Prolamellar Body Structure at High Concentrations of Hg2+.” Plant Biology (Stuttgart) 8 (5): 627–635. doi:10.1055/s-2006-924110.
  • Solymosi, K., and B. Schoefs. 2010. “Etioplast and Etio-Chloroplast Formation under Natural Conditions: The Dark Side of Chlorophyll Biosynthesis in Angiosperms.” Photosynthesis Research 105 (2): 143–166. doi:10.1007/s11120-010-9568-2.
  • Solymosi, K., B. Vitányi, É. Hideg, and B. Boddi. 2007. “Etiolation Symptoms in Sunflower (Helianthus annuus) Cotyledons Partially Covered by the Pericarp of the Achene.” Annals of Botany 99 (5): 857–867. doi:10.1093/aob/mcm034.
  • Sperling, U., F. Franck, B. van Cleve, G. Frick, K. Apel, and G. A. Armstrong. 1998. “Etioplast Differentiation in Arabidopsis: Both PORA and PORB Restore the Prolamellar Body and Photoactive protochlorophyllide-F655 to the Cop1 Photomorphogenic Mutant.” The Plant Cell 10 (2): 283–296.
  • Sperling, U., B. van Cleve, G. Frick, K. Apel, and G. A. Armstrong. 1997. “Overexpression of Light-Dependent PORA or PORB in Plants Depleted of Endogenous POR by Far-Red Light Enhances Seedling Survival in White Light and Protects against Photooxidative Damage.” The Plant Journal 12 (3): 649–658. doi:10.1046/j.1365-313X.1997.00649.x.
  • Tränkner, M., E. Tavakol, and B. Jákli. 2018. “Functioning of Potassium and Magnesium in Photosynthesis, Photosynthate Translocation and Photoprotection.” Physiologia Plantarum 163: 414–431. doi:10.1111/ppl.12747.
  • Treffry, T. 1973. “Chloroplast Development in Etiolated Peas: Reformation of Prolamellar Bodies in Red Light without Accumulation of Protochlorophyllide.” Journal of Experimental Botany 24 (1): 185–186. doi:10.1093/jxb/24.1.185.
  • Ünnep, R., G. Nagy, M. Markó, and G. Garab. 2014b. “Monitoring Thylakoid Ultrastructural Changes in Vivo Using Small-Angle Neutron Scattering.” Plant Physiology and Biochemistry 81: 197–207. doi:10.1016/j.plaphy.2014.02.005.
  • Ünnep, R., O. Zsiros, K. Solymosi, L. Kovács, P. H. Lambrev, T. Tóth, R. Schweins, et al. 2014a. “The Ultrastructure and Flexibility of Thylakoid Membranes in Leaves and Isolated Chloroplasts as Revealed by Small-Angle Neutron Scattering.” Biochimica Et Biophysica Acta (BBA) - Bioenergetics 1837 (9): 1572–1580. doi:10.1016/j.bbabio.2014.01.017.
  • van Eerden, F. J., D. H. de Jong, A. H. de Vries, T. A. Wassenaar, and S. J. Marrink. 2015. “Characterization of Thylakoid Lipid Membranes from Cyanobacteria and Higher Plants by Molecular Dynamics Simulations.” Biochimica Et Biophysica Acta 1848 (6): 1319–1330. doi:10.1016/j.bbamem.2015.02.025.
  • Vitányi, B., A. Kósa, K. Solymosi, and B. Böddi. 2013. “Etioplasts with Protochlorophyll and Protochlorophyllide Forms in the Under-Soil Epicotyl Segments of Pea (Pisum sativum) Seedlings Grown under Natural Light Conditions.” Physiologia Plantarum 148 (2): 307–315. doi:10.1111/j.1399-3054.2012.01714.x.
  • von Wettstein, D. 1967. “Chloroplast Structure and Genetics.” In Harvesting the Sun, edited by A. San Pietro, F. A. Greer, and T. D. Army, 153–190. New York: Academic Press.
  • Von Wettstein, D., S. Gough, and C. G. Kannangara. 1995. “Chlorophyll Biosynthesis.” The Plant Cell 7 (7): 1039–1057. doi:10.1105/tpc.7.7.1039.
  • Weier, T. E., and D. L. Brown. 1970. “Formation of the Prolamellar Body in 8-Day, Dark-Grown Seedlings.” American Journal of Botany 57 (3): 267–275. doi:10.2307/2485302.
  • Whatley, J. M. 1977. “Variations in the Basic Pathway of Chloroplast Development.” The New Phytologist 78 (2): 407–420. doi:10.1111/j.1469-8137.1977.tb04846.x.
  • Wildman, S. G., A. M. Hirsch, S. J. Kirchanski, and D. Spencer. 2004. “Chloroplasts in Living Cells and the String-Of-Grana Concept of Chloroplast Structure Revisited.” Photosynthesis Research 80 (1–3): 345–352. doi:10.1023/B:PRES.0000030423.84134.3c.
  • Wildman, S. G., C. A. Jope, and B. A. Atchison. 1980. “Light Microscopic Analysis of the Three-Dimensional Structure of Higher Plant Chloroplasts. Position of Starch Grains and Probable Spiral Arrangement of Stroma Lamellae and Grana.” Botanical Gazette 141 (1): 24–36. doi:10.1086/337118.
  • Williams, W. P., E. Selstam, and T. Brain. 1998. “X-Ray Diffraction Studies of the Structural Organisation of Prolamellar Bodies Isolated from Zea mays.” FEBS Letters 422 (2): 252–254.
  • Wood, W. H. J., C. MacGregor-Chatwin, S. F. H. Barnett, G. E. Mayneord, X. Huang, J. K. Hobbs, C. N. Hunter, and M. P. Johnson. 2018. “Dynamic Thylakoid Stacking Regulates the Balance between Linear and Cyclic Photosynthetic Electron Transfer.” Nature Plants 4 (2): 116. doi:10.1038/s41477-017-0092-7.
  • Yoshioka-Nishimura, M. 2016. “Close Relationships between the PSII Repair Cycle and Thylakoid Membrane Dynamics.” Plant and Cell Physiology 57 (6): 1115–1122. doi:10.1093/pcp/pcw050.
  • Yoshioka-Nishimura, M., D. Nanba, T. Takaki, C. Ohba, N. Tsumura, N. Morita, H. Sakamoto, K. Murata, and Y. Yamamoto. 2014. “Quality Control of Photosystem II: Direct Imaging of the Changes in the Thylakoid Structure and Distribution of FtsH Proteases in Spinach Chloroplasts under Light Stress.” Plant and Cell Physiology 55 (7): 1255–1265. doi:10.1093/pcp/pcu079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.