330
Views
3
CrossRef citations to date
0
Altmetric
Palaeobotany

Plant–insect interactions from the mid-Cretaceous at Puy-Puy (Aquitaine Basin, western France) indicates preferential herbivory for angiosperms amid a forest of ferns, gymnosperms, and angiosperms

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 568-587 | Received 02 Apr 2022, Accepted 13 Jun 2022, Published online: 01 Jul 2022

References

  • Adroit, B, T Wappler, JF Terral, AA Ali, V Girard. 2016. Bernasso, a paleoforest from the early Pleistocene: new input from plant–insect interactions (Hérault, France). Palaeogeogr Palaeoclimatol Palaeoecol. 446:78–84. doi:10.1016/j.palaeo.2016.01.015.
  • Adroit, B, V Teodoridis, TH Güner, T Denk. 2021. Patterns of insect damage types reflect complex environmental signal in Miocene forest biomes of Central Europe and the Mediterranean. Global and Planetary Change. 199:103451. doi:10.1016/j.gloplacha.2021.103451.
  • Augusto, L, TJ Davies, S Delzon, A De Schrijver. 2014. The enigma of the rise of angiosperms: can we untie the knot? Ecol Lett. 17(10):1326–1338. doi:10.1111/ele.12323.
  • Banerji, J. 2004. Evidence of insect-plant interactions from the Upper Gondwana sequence (Lower Cretaceous) in the Rajmahal Basin, India. Gondwana Res. 7(1):205–210. doi:10.1016/S1342-937X(05)70320-8.
  • Bar-On, YM, R Phillips, R Milo. 2018. The biomass distribution on Earth. Proc Natl Acad Sci USA. 115(25):6506–6511. doi:10.1073/pnas.1711842115.
  • Barba‐Montoya, J, M Dos Reis, H Schneider, PC Donoghue, Z Yang. 2018. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytol. 218(2):819–834. doi:10.1111/nph.15011.
  • Breton, G, D Néraudeau, E Dépré. 2015. Mecochiridae (Crustacea, Decapoda, Glypheidea) de l’Albien et du Cénomanien de France. Annales de Paléontologie. 101(1):55–64. doi:10.1016/j.annpal.2015.01.001.
  • Caldwell, E, J Read, GD Sanson. 2016. Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann Bot. 117(2):349–361. doi:10.1093/aob/mcv178.
  • Chabot, BF, DJ Hicks. 1982. The ecology of leaf life spans. Annu Rev Ecol Evol Syst. 13(1):229–259. doi:10.1146/annurev.es.13.110182.001305.
  • Coiffard, C, B Gomez, J Kvaček, F Thévenard. 2006. Early angiosperm ecology: evidence from the Albian–Cenomanian of Europe. Ann Bot. 98(3):495–502. doi:10.1093/aob/mcl125.
  • Coiffard, C, B Gomez, M Thiébaut, J Kvaček, F Thévenard, D Néraudeau. 2009. Intramarginal-veined Lauraceae leaves from the Albian–Cenomanian of Charente-Maritime (western France). Palaeontology. 52(2):323–336. doi:10.1111/j.1475-4983.2009.00845.x.
  • Colin, JP, D Néraudeau, A Nel, V Perrichot. 2011. Termite coprolites (Insecta: isoptera) from the Cretaceous of western France: a palaeoecological insight. Revue de Micropaléontologie. 54(3):129–139. doi:10.1016/j.revmic.2011.06.001.
  • Cuevas-Reyes, P, M Quesada, P Hanson, R Dirzo, K Oyama. 2004. Diversity of gall inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms. Host plant age and plant density. J Ecol. 92(4):707–716. doi:10.1111/j.0022-0477.2004.00896.x.
  • Cuevas-Reyes, P, M Quesada, K Oyama. 2006. Abundance and leaf damage caused by gall-inducing insects in a Mexican tropical dry forest. Biotropica. 38(1):107–115.
  • Currano, ED, P Wilf, SL Wing, CC Labandeira, EC Lovelock, DL Royer. 2008. Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum. Proc Natl Acad Sci USA. 105(6):1960–1964. doi:10.1073/pnas.0708646105.
  • Currano, ED, CC Labandeira, P Wilf. 2010. Fossil insect folivory tracks paleotemperature for six million years. Ecol Monogr. 80(4):547–567. doi:10.1890/09-2138.1.
  • Currano, ED, LE Azevedo-Schmidt, SA Maccracken, A Swain. 2021. Scars on fossil leaves: an exploration of ecological patterns in plant–insect herbivore associations during the Age of Angiosperms. Palaeogeogr Palaeoclimatol Palaeoecol. 582:110636. doi:10.1016/j.palaeo.2021.110636.
  • Ding, Q, CC Labandeira, Q Meng, D Ren. 2015. Insect herbivory, plant-host specialization and tissue partitioning on mid-Mesozoic broadleaved conifers of Northeastern China. Palaeogeogr Palaeoclimatol Palaeoecol. 440:259–273. doi:10.1016/j.palaeo.2015.09.007.
  • Donovan, MP, P Wilf, CC Labandeira, KR Johnson, DJ Peppe. 2014. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PLoS One. 9(7):e103542. doi:10.1371/journal.pone.0103542.
  • Donovan, MP, A Iglesias, P Wilf, CC Labandeira, NR Cúneo. 2016. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat Ecol Evol. 1:0012. doi:10.1038/s41559-016-0012.
  • Donovan, MP, A Iglesias, P Wilf, CC Labandeira, NR Cúneo. 2018. Diverse plant-insect associations from the latest Cretaceous and early Paleocene of Patagonia, Argentina. Ameghiniana. 55(3):303–338. doi:10.5710/AMGH.15.02.2018.3181.
  • Donovan, MP, P Wilf, A Iglesias, NR Cúneo, CC Labandeira. 2020. Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Commun Biol. 3(1):708. doi:10.1038/s42003-020-01428-9.
  • Doyle, JA. 2012. Molecular and fossil evidence on the origin of angiosperms. Annu Rev Earth Planet Sci. 40(1):301–326. doi:10.1146/annurev-earth-042711-105313.
  • Dunne, JA, CC Labandeira, RJ Williams. 2014. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc R Soc B: Biol Sci. 281(1782):20133280. doi:10.1098/rspb.2013.3280.
  • Estévez-Gallardo, P, LM Sender, E Mayoral, JB Diez. 2018. First evidence of insect herbivory on Albian aquatic angiosperms of the NE Iberian Peninsula. Earth Environ Sci Trans R Soc Edinb. 108(4):429–435.
  • Evans, AM, DD McKenna, C Bellamy, BD Farrell. 2015. Large-scale molecular phylogeny of metallic wood-boring beetles (Coleoptera: buprestoidea) provides new insights into relationships and reveals multiple evolutionary origins of the larval leaf-mining habit. Syst Entomol. 40(2):385–400. doi:10.1111/syen.12108.
  • Farrell, BD. 1998. Inordinate Fondness” explained: why are there so many beetles? Science. 281(5376):555–559. doi:10.1126/science.281.5376.555.
  • Fernandes, GW, PW Price. 1988. Biogeographical gradients in galling species richness: test of hypotheses. Oecologia. 76(2):161–167. doi:10.1007/BF00379948.
  • Fernandes, GW, PW Price. 1992. The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia. 90(1):14–20. doi:10.1007/BF00317803.
  • Filho, EBDS, K Adami-Rodrigues, FJD Lima, RAM Bantim, T Wappler, AÁF Saraiva. 2019. Evidence of plant–insect interaction in the Early Cretaceous flora from the Crato Formation, Araripe Basin, northeast Brazil. Historical Biology. 31(7):926–937. doi:10.1080/08912963.2017.1408611.
  • Friis, EM, PR Crane, KR Pedersen. 2011. Early Flowers and Angiosperm Evolution. New York: Cambridge University Press.
  • Fritsch, A. 1882. Fossile Arthropoden aus der Steinkohlen- und Kreideformation Böhmens. Beiträge zur Paläontologie Österreich-Ungarns Und des Orients. 2:1–7.
  • Genise, JF. 1995. Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos. 3(4):287–299. doi:10.1080/10420949509386399.
  • Genise, JF, MV Sánchez, DG Poiré, MG González. 2020. A fossorial petalurid trace fossil from the Albian of Patagonia. Cretaceous Research. 116:104591. doi:10.1016/j.cretres.2020.104591.
  • Girard, V, D Néraudeau, SM Adl, G Breton. 2011. Protist-like inclusions in amber, as evidenced by Charentes amber. European Journal of Protistology. 47(2):59–66. doi:10.1016/j.ejop.2010.12.003.
  • Gomez, B, F Thévenard, V Perrichot, V Daviero-Gomez, D Néraudeau. 2002. Le conifère Glenrosa dans l’Albien–Cénomanien de Charentes: marqueur d’un climat à saison sèche. In Actes du Colloque Environnement et Climat du Passé: histoire et Évolution. Paris; p. 70.
  • Gomez, B, C Coiffard, D É, V Daviero-Gomez, D Néraudeau. 2008. Diversity and histology of a plant litter bed from the Cenomanian of Archingeay–Les Nouillers (southwestern France). Comptes Rendus Palevol. 7(2–3):135–144. doi:10.1016/j.crpv.2007.12.006.
  • González-Juárez, DE, A Escobedo-Moratilla, J Flores, S Hidalgo-Figueroa, N Martínez-Tagüeña, J Morales-Jiménez, Muñiz-Ramírez, A., Pastor-Palacios, G., Pérez-Miranda, S., Ramírez-Hernández, A., Trujillo, J., Bautista, E. 2020. A review of the Ephedra genus: distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules. 25(14):3283. doi:10.3390/molecules25143283.
  • Gunkel, S, T Wappler. 2015. Plant–insect interactions in the upper Oligocene of Enspel (Westerwald, Germany), including an extended mathematical framework for rarefaction. Palaeobiodiversity and Palaeoenvironments. 95(1):55–75. doi:10.1007/s12549-014-0176-6.
  • Heck, KL, G van Belle, D Simberloff. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology. 56(6):1459–1461. doi:10.2307/1934716.
  • Julião, GR, EM Venticinque, GW Fernandes, PW Price. 2014. Unexpected high diversity of galling insects in the Amazonian upper canopy: the savanna out there. PloS One. 9(12):e114986. doi:10.1371/journal.pone.0114986.
  • Klymiuk, AA, RA Stockey, GW Rothwell. 2015. Plant-arthropod interactions in Acanthostrobus edenensis (Cupressaceae), a new conifer from the Upper Cretaceous of Vancouver Island, British Columbia. Int J Plant Sci. 176(4):378–392. doi:10.1086/680684.
  • Knor, S, J Prokop, Z Kvaček, Z Janovský, T Wappler. 2012. Plant–arthropod associations from the Early Miocene of the Most Basin in North Bohemia—palaeoecological and palaeoclimatological implications. Palaeogeogr Palaeoclimatol Palaeoecol. 321:102–112. doi:10.1016/j.palaeo.2012.01.023.
  • Knor, S, M Skuhravá, T Wappler, J Prokop. 2013. Galls and gall makers on plant leaves from the lower Miocene (Burdigalian) of the Czech Republic: systematic and palaeoecological implications. Review of Palaeobotany and Palynology. 188:38–51. doi:10.1016/j.revpalbo.2012.10.001.
  • Krassilov, VA, N Silantieva, M Hellmund, W Hellmund. 2007. Insect egg sets on angiosperm leaves from the Lower Cretaceous of Negev, Israel. Cretaceous Research. 28(5):803–811. doi:10.1016/j.cretres.2006.11.004.
  • Krassilov, VA. 2007. Mines and galls on fossil leaves from the Late Cretaceous of southern Negev, Israel. Afr Invertebr. 48(1):13–22.
  • Krassilov, V, N Silantieva, Z Lewy. 2008. Traumas on fossil leaves from the Cretaceous of Israel. In V Krassilov, A Rasnitsyn, editors. Plant–Arthropod Interactions in the Early Angiosperm History: evidence from the Cretaceous of Israel. Sofia–Moscow: Pensoft (and Leiden–Boston): Brill; p. 7–187.
  • Krassilov, VA, AP Rasnitsyn. 2008. Plant-Arthropod Interactions in the Early Angiosperm History. In Evidence from the Cretaceous of Israel. Pensoft: sofia and Moscow. BRILL Leiden and Boston.
  • Krassilov, VA, S Shuklina. 2008. Arthropod trace diversity on fossil leaves from the mid-Cretaceous of Negev, Israel. Alavesia. 2:239–245.
  • Krassilov, V. 2008a. Mine and gall predation as top down regulation in the plant–insect systems from the Cretaceous of Negev, Israel. Palaeogeogr Palaeoclimatol Palaeoecol. 261(3–4):261–269. doi:10.1016/j.palaeo.2008.01.017.
  • Krassilov, VA. 2008b. Evidence of temporary mining in the Cretaceous fossil mine assemblage of Negev, Israel. Insect Science. 15(3):285–290. doi:10.1111/j.1744-7917.2008.00212.x.
  • Kvaček, J. 2000. Frenelopsis alata and its microsporangiate and ovuliferous reproductive structures from the Cenomanian of Bohemia (Czech Republic, Central Europe). Review of Palaeobotany and Palynology. 112(1):51–78. doi:10.1016/S0034-6667(00)00035-X.
  • Kvaček, J, HJ Falcon-Lang, J Dašková. 2005. A new Late Cretaceous ginkgoalean reproductive structure Nehvizdyella gen. nov. from the Czech Republic and its whole-plant reconstruction. Am J Bot. 92(12):1958–1969. doi:10.3732/ajb.92.12.1958.
  • Labandeira, CC. 2002. The history of associations between plants and animals. In C Herrera, O Pellmyr, editors. Plant–animal interactions: an evolutionary approach. Oxford: Blackwell Science; p. 26–74, 248–261.
  • Labandeira, CC, KR Johnson, and P Wilf. 2002. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2061–2066.
  • Labandeira, CC. 2006. The four phases of plant-arthropod associations in deep time. Geol Acta. 4:409–438.
  • Labandeira, CC, P Wilf, KR Johnson, F Marsh. 2007. Guide to Insect (and other) Damage Types on Compressed Plant Fossils (Version 3.0—Spring 2007). Washington (D.C): Smithsonian Institution. p. 26. https://citeseerx.ist.psu.edu/viewdoc/download.
  • Labandeira, CC. 2014. Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues. In P Pontarotti, editor. Evolutionary Biology: genome Evolution, Speciation, Coevolution and Origin of Life. Cham: Springer; p. 261–299.
  • Labandeira, CC, and LF Li. 2021. The history of insect parasitism and the Mid Mesozoic Parasitoid Revolution. In K D Baets, J Huntley, editors. The Evolution and Fossil Record of Parasitism—Identification and Macroevolution of Parasites. Topics in Geobiology. Vol. 49, p. 377–533. Springer: Cham.
  • Le Diouron, T 2005. Les végétaux fossiles des argiles de l’Albien terminal et du Cénomanien basal de la carrière de Puy-Puy (Tonnay-Charente, Charente-Maritime): implications paléoenvironnementales. Master Dissertation. Université Rennes.
  • Leppanen, SA, E Altenkkhofer, AD Liston, T Nyman. 2012. Phylogenetics and evolution of a host-plant use in leaf-mining sawflies (Hymenoptera: tenthredinidae: heterarthrinae). Mol Phylogenet Evol. 64(2):331–341. doi:10.1016/j.ympev.2012.04.005.
  • Li, HT, TS Yi, LM Gao, PF Ma, T Zhang, JB Yang, DZ Li, PW Fritsch, J Cai, Y Luo. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants. 5(5):461–470. doi:10.1038/s41477-019-0421-0.
  • Maccracken, SA, IM Miller, CC Labandeira. 2019. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants. Biol Lett. 15(11):20190657. doi:10.1098/rsbl.2019.0657.
  • Maccracken, SA, JC Jae-Cheon Sohn, IM Miller, CC Labandeira. 2021. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. Journal of Systematic Palaeontology. 19(2):131–144. doi:10.1080/14772019.2021.1881177.
  • McCoy, VE, T Wappler, CC Labandeira. 2021. Exceptional fossilization of ecological interactions: plant defenses during the four major expansions of arthropod herbivory in the fossil record. In C T Gee, V E McCoy, P M Sander, editors. Understanding the Material Nature of Ancient Plants and Animals. Baltimore: Johns Hopkins University Press; p. 187–220.
  • McKenna, DG, AS Sequeira, AE Marvaldi, BD Farrell. 2009. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci USA. 106(17):7083–7088. doi:10.1073/pnas.0810618106.
  • Mikuláš, R, J Milàn, JF Genise, M Bertling, RG Bromley. 2020. An insect boring in an Early Cretaceous wood from Bornholm, Denmark. Ichnos. 27(3):284–289. doi:10.1080/10420940.2020.1744587.
  • Mohanta, TK, A Occhpinti, SA Zebelo, M Foti, S Fliegmann, S Bossi, ME Maffei, CM Bertea. 2012. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS One. 7(3):e32822. doi:10.1371/journal.pone.0032822.
  • Mora, C, DP Tittensor, S Adl, AG Simpson, B Worm. 2011. How many species are there on Earth and in the ocean? PLoS Biol. 9(8):e1001127. doi:10.1371/journal.pbio.1001127.
  • Moreau, JD, D Néraudeau, B Gomez, P Tafforeau, É Dépré. 2014. Inclusions of conifers, echinoids, foraminifers and sponges in flints from the Cenomanian of Charente-Maritime (France): contribution of synchrotron microtomography. Comptes Rendus Palevol. 13(5):455–461. doi:10.1016/j.crpv.2014.03.007.
  • Moreau, JD, D Néraudeau, P Tafforeau, E Dépré. 2015. Study of the histology of leafy axes and male cones of Glenrosa carentonensis sp. nov. (Cenomanian Flints of Charente-Maritime, France) using synchrotron microtomography Linked with Palaeoecology. PLoS One. 10(8):e0134515. doi:10.1371/journal.pone.0134515.
  • Moreau, JD, D Néraudeau, M Philippe, E Dépré. 2017. Albian flora from Archingeay-Les Nouillers (Charente-Maritime): comparison and synthesis of Cretaceous meso- and macro-remains from the Aquitaine Basin (southwestern France). Geodiversitas. 39(4):729–740. doi:10.5252/g2017n4a5.
  • Moreau, JD, M Philippe, D Néraudeau, E Dépré, M Le Couls, V Fernández, S Beurel. 2021. Paleohistology of the Cretaceous resin‐producing conifer Geinitzia reichenbachii using X‐ray synchrotron microtomography. Am J Bot. 108(9):1745–1760. doi:10.1002/ajb2.1722.
  • Moreira, X, R Zas, L Sampedro. 2012. Differential allocation of constitutive and induced chemical defenses in pine tree juveniles: a test of the optimal defense theory. PLOS One. 7(3):e34006. doi:10.1371/journal.pone.0034006.
  • Moreno-Domínguez, R. 2018. Primeras interacciones planta-insecto del Oligoceno de la Península Ibérica. Rev Soc Geol Esp. 31(1):19–28.
  • Nel, A, D Néraudeau, V Perrichot, V Girard, B Gomez. 2008. A new dragonfly family from the Upper Cretaceous of France. Acta Palaeontologica Polonica. 53(1):165–168. doi:10.4202/app.2008.0113.
  • Néraudeau, D, V Perrichot, J Dejax, E Masure, A Nel, M Philippe, T Guyot. 2002. Un nouveau gisement à ambre insectifère et à végétaux (Albien terminal probable): archingeay (Charente-Maritime, France). Geobios. 35(2):233–240. doi:10.1016/S0016-6995(02)00024-4.
  • Néraudeau, D, R Vullo, B Gomez, V Perrichot, B Videt. 2005. Stratigraphie et Paléontologie (plantes, vertébrés) de la série paralique Albien terminal-Cénomanien basal de Tonnay-Charente (Charente-Maritime, France). Comptes Rendus Palevol. 4(1–2):79–93. doi:10.1016/j.crpv.2004.11.008.
  • Néraudeau, D, R Vullo, V Girard, B Gomez, V Perrichot, B Videt. 2009. Les faciès ligniteux paraliques à ambre, végétaux et vertébrés du Cénomanien inférieur de l’île d’Aix (Charente-Maritime, France). Geodiversitas. 31(1):13–27. doi:10.5252/g2009n1a2.
  • Néraudeau, D, R Vullo, P Bénéfice, G Breton, É Dépré, D Gaspard, T Wappler. 2020. The paralic Albian–Cenomanian Puy-Puy Lagerstätte (Aquitaine Basin, France): an overview and new data. Cretaceous Research. 111:104–124. doi:10.1016/j.cretres.2019.03.022.
  • Peñalver, E, A Arillo, R Pérez-de la Fuente, ML Riccio, X Delclòs, E Barrón, DA Grimaldi. 2015. Long-proboscid flies as pollinators of Cretaceous Gymnosperms. Curr Biol. 25(14):1917–1923. doi:10.1016/j.cub.2015.05.062.
  • Peris, D, CC Labandeira, E Barrón, X Delclòs, J Rust, B Wang. 2020. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience. 23(3):100913. doi:10.1016/j.isci.2020.100913.
  • Perrichot, V. 2005. Environnements paraliques et à ambre et a végétaux du Crétacé Nord-Aquitain (Charentes, Sud-Ouest de la France). Mém Géosci Rennes. 118:1e295.
  • Perrichot, V, A Nel, E Guilbert, D Néraudeau. 2006. Fossil Tingoidea (Heteroptera: cimicomorpha) from French Cretaceous amber, including Tingidae and a new family, Ebboidae. Zootaxa. 1203(1):57–68. doi:10.11646/zootaxa.1203.1.3.
  • Petrov, AV. 2013. New ichnotaxon Megascolytinus zherikhini (Coleoptera: curculionidae: scolytinae) from Upper Cretaceous deposits of Mongolia. Paleontological Journal. 47(6):597–600. doi:10.1134/S0031030113060051.
  • Peyrot, D, D Jolly, E Barrón. 2005. Apport de données palynologiques à la reconstruction paléoenvironnementale de l’Albo-Cénomanien des Charentes (Sud-Ouest de la France). Comptes Rendus Palevol. 4(1–2):151–165. doi:10.1016/j.crpv.2004.11.016.
  • Philip, J, JF Babinot, G Tronchetti, E Fourcade, J Azéma, R Guiraud, Y Bellion, LE Ricou, B Vrielynck, and J Boulin, et al. 1993. Late Cenomanian (94–92 Ma). In J Dercourt, L E Ricou, B Vrielynck, editors. Atlas Tethys Palaeoenvironmental Maps, Explanatory Notes. Paris: Gauthier-Villars. 153–178.
  • Philippe, M, B Gomez, V Girard, C Coiffard, V Daviero-Gomez, F Thévenard, J Schlögl. 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld. 17(2):142–152. doi:10.1016/j.palwor.2008.06.001.
  • Pires, EF, MG Sommer. 2009. Plant–arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brazil. Journal of South American Earth Sciences. 27(1):50–59. doi:10.1016/j.jsames.2008.09.004.
  • Polette, F, A Licht, A Cincotta, DJ Batten, P Depuydt, D Néraudeau, X Valentin. 2019. Palynological assemblage from the lower Cenomanian plant-bearing Lagerstätte of Jaunay-Clan-Ormeau-Saint-Denis (Vienne, western France): stratigraphic and paleoenvironmental implications. Review of Palaeobotany and Palynology. 271:104102. doi:10.1016/j.revpalbo.2019.104102.
  • Price, PW, GW Fernandes, ACF Lara, J Brawn, H Barrios, MG Wright, N Rothcliff. 1998. Global patterns in local number of insect galling species. J Biogeogr. 25(3):581–591. doi:10.1046/j.1365-2699.1998.2530581.x.
  • Roskov, Y, T Kunze, L Paglinawan, T Orrell, D Nicolson, Culham, A, Bailly, N, Kirk, P, Bourgoin, T, Baillargeon, G, Hernandez, F, and De Wever, A. 2013. Species 2000 & ITIS Catalogue of Life: annual Checklist. Leiden (Netherlands): Catalogue of Life. http://www.catalogueoflife.org/annualchecklist/.
  • Ruhnke, H, M Schädler, S Klotz, D Matthies, R Brandl. 2009. Variability in leaf traits, insect herbivory and herbivore performance within and among individuals of four broad-leaved tree species. Basic Appl Ecol. 10(8):726–736. doi:10.1016/j.baae.2009.06.006.
  • Santos, AA, LM Sender, T Wappler, MS Engel, JB Diez. 2021. A Robinson Crusoe story in the fossil record: plant-insect interactions from a Middle Jurassic ephemeral volcanic island (Eastern Spain). Palaeogeogr Palaeoclimatol Palaeoecol. 583:110655. doi:10.1016/j.palaeo.2021.110655.
  • Schneider, D, M Wink, F Sporer, P Lounibos. 2002. Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften. 89(7):281–294. doi:10.1007/s00114-002-0330-2.
  • Sender, LM, B Gomez, JB Diez, C Coiffard, C Martin-Closas, U Villanueva-Amadoz, J Ferrer. 2010. Ploufolia cerciforme gen. et comb. nov.: aquatic angiosperm leaves from the Upper Albian of north-eastern Spain. Review of Palaeobotany and Palynology. 161(1–2):77–86. doi:10.1016/j.revpalbo.2010.03.001.
  • Song, N, AP Liang. 2013. A preliminary molecular phylogeny of planthoppers (Hemiptera: fulgoridea) based on nuclear and mitochondrial DNA sequences. PLoS One. 8(3):e58400. doi:10.1371/journal.pone.0058400.
  • Song, H, C Amédégnato, MM Cigliano, L Desutter-Grandcolas, SW Heads, DY Huang, D Otte, MF Whiting. 2015. 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics. 31(6):621–651. doi:10.1111/cla.12116.
  • Stork, NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol. 63(1):31–45. doi:10.1146/annurev-ento-020117-043348.
  • Szwedo, J. 2002. Amber and amber inclusions of planthoppers, leafhoppers and their relatives (Hemiptera, Archaeorrhyncha et Clypaeorrhyncha). Denisia. 176:37–56.
  • Uličný, D, J Kvaček, M Svobodová, L Špičáková. 1997. High-frequency sea-level fluctuations and plant habitats in Cenomanian fluvial to estuarine succession: pecínov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology. 136(1):165–197. doi:10.1016/S0031-0182(97)00033-3.
  • Upchurch, GA, and DL Dilcher. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation Rose Creek locality, Jefferson County, southeastern Nebraska. U S Geol Surv Bull. 1915:1–55.
  • Vea, IM, DA Grimaldi. 2016. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Sci Rep. 6(1):23487. doi:10.1038/srep23487.
  • Videt, B. 2004. Dynamique des paléoenvironnements à huitres du Crétacé supèrieur Nord‐Aquitain (SO France) et du Mio‐Pliocène Andalou (SE Espagne): biodiversité, analyse séquentielle, biogéochimie. Mém Géosci Rennes. 108:1–284.
  • Vullo, R, D Néraudeau, B Videt. 2003. Un faciès de type falun dans le Cénomanien basal de Charente-Maritime (France). Annales de Paléontologie. 89(3):171–189. doi:10.1016/S0753-3969(03)00025-9.
  • Vullo, R, D Néraudeau. 2008. Cenomanian vertebrate assemblages from southwestern France: a new insight into the European mid-Cretaceous continental fauna. Cretaceous Research. 29(5–6):930–935. doi:10.1016/j.cretres.2008.05.010.
  • Vullo, R, D Néraudeau, E Dépré. 2013. Vertebrate remains from the Cenomanian (Late Cretaceous) plant-bearing Lagerstätte of Puy-Puy (Charente-Maritime, France). Cretaceous Research. 45:314–320. doi:10.1016/j.cretres.2013.06.002.
  • Wahlberg, N, CW Wheat, C Peña. 2013. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS One. 8(11):e80875. doi:10.1371/journal.pone.0080875.
  • Wang, X. 2010. The Dawn Angiosperms. Heidelberg: Springer.
  • Wang, B, H Zhang, EA Jarzembowski. 2013. Early Cretaceous angiosperms and beetle evolution. Front Plant Sci. 4:360. doi:10.3389/fpls.2013.00360.
  • Wappler, T, ED Currano, P Wilf, J Rust, CC Labandeira. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proceedings of the Royal Society B: Biological Sciences. 276(1677):4271–4277. doi:10.1098/rspb.2009.1255.
  • Wappler, T. 2010. Insect herbivory close to the Oligocene–Miocene transition – a quantitative analysis. Palaeogeogr Palaeoclimatol Palaeoecol. 292(3–4):540–555. doi:10.1016/j.palaeo.2010.04.029.
  • Wardle, DA, KI Bonner, GM Barker. 2002. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol. 16(5):585–595. doi:10.1046/j.1365-2435.2002.00659.x.
  • Wilf, P, CC Labandeira. 1999. Response of plant-insect associations to Paleocene–Eocene warming. Science. 284(5423):2153–2156. doi:10.1126/science.284.5423.2153.
  • Xiao, LF, CC Labandeira, DL Dilcher, D Ren. 2021a. Florivory on Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination. Proceedings of the Royal Society B: Biological Sciences. 288(1953):20210320. doi:10.1098/rspb.2021.0320.
  • Xiao, LF, CC Labandeira, Y Ben-Dov, SA Maccracken, CK Shih, DL Dilcher, D Ren. 2021b. Early Cretaceous mealybug herbivory on a laurel highlights the deep-time history of angiosperm–scale insect associations. New Phytol. 232(3):1414–1423. doi:10.1111/nph.17672.
  • Xiao, LF, CC Labandeira, D Ren. 2022a. Insect herbivory immediately before the eclipse of the gymnosperms. Ins Sci. 29. doi:10.1017/pab.2021.20.
  • Xiao, LF, CC Labandeira, DL Dilcher, D Ren. 2022b. Insect herbivory at the Dawn of angiosperm diversification. Cretaceous Research. 131:105088. doi:10.1016/j.cretres.2021.105088.
  • Xiao, LF, CC Labandeira, DL Dilcher, D Ren. 2022c. Data, analyses, and details for insect herbivory at the Dawn of angiosperm diversification. Data in Brief. 42:108170. doi:10.1016/j.dib.2022.108170.
  • Yao, Y, D Ren, DA Rider, W Cai. 2012. Phylogeny of the Infraorder Pentatomorpha based on fossil and extant morphology, with descriptions of a new fossil family from China. PLoS One. 7(5):e37289. doi:10.1371/journal.pone.0037289.
  • Zhang, ZQ. 2011. Animal Biodiversity: an Outline of Higher-Level Classification and Survey of Taxonomic Richness. Auckland: Magnolia Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.