1,497
Views
42
CrossRef citations to date
0
Altmetric
Articles

The Importance of Scale in Spatially Varying Coefficient Modeling

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 50-70 | Received 01 Sep 2017, Accepted 01 Feb 2018, Published online: 20 Dec 2018

References

  • Anselin, L. 2010. Thirty years of spatial econometrics. Papers in Regional Science 89 (1):3–25. doi:10.1111/j.1435-5957.2010.00279.x.
  • Anselin, L., and S. Rey. 1991. Properties of tests for spatial dependence in linear regression models. Geographical Analysis 23 (2):112–31. doi:10.1111/j.1538-4632.1991.tb00228.x.
  • Assunção, R. M. 2003. Space varying coefficient models for small area data. Environmetrics 14:453–73. doi:10.1002/env.599.
  • Atkinson, P. M., S. E. German, D. A. Sear, and M. J. Clark. 2003. Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis 35 (1):58–82. doi:10.1111/j.1538-4632.2003.tb01101.x.
  • Bárcena, M. J., P. Menéndez, M. B. Palacios, and F. Tusell. 2014. Alleviating the effect of collinearity in geographically weighted regression. Journal of Geographical Systems 16 (4):441–66. doi:10.1007/s10109-014-0199-6.
  • Besag, J., J. York, and A. Mollie. 1991. Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43:1–59. doi:10.1007/BF00116466.
  • Bishop, C. M. 2006. Pattern recognition and machine learning. New York: Springer.
  • Bitter, C., G. F. Mulligan, and S. Dall’erba. 2007. Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method. Journal of Geographical Systems 9 (1):7–27. doi:10.1007/s10109-006-0028-7.
  • Brunsdon, C., A. S. Fotheringham, and M. E. Charlton. 1996. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis 28 (4):281–98. doi:10.1111/j.1538-4632.1996.tb00936.x.
  • Brunsdon, C., A. S. Fotheringham, and M. E. Charlton.. 1998. Geographically weighted regression—Modelling spatial non-stationarity. Journal of the Royal Statistical Society, Series D: The Statistician 47 (3):431–43. doi:10.1111/1467-9884.00145.
  • Brunsdon, C., A. S. Fotheringham, and M. E. Charlton.. 1999. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 39 (3):497–524. doi:10.1111/0022-4146.00146.
  • Brunsdon, C., J. McClatchey, and D. J. Unwin. 2001. Spatial variations in the average rainfall–altitude relationship in Great Britain: An approach using geographically weighted regression. International Journal of Climatology 21 (4):455–66. doi:10.1002/joc.614.
  • Casetti, E. 1972. Generating models by the expansion method: Applications to geographical research. Geographical Analysis 4 (1):81–91. doi:10.1111/j.1538-4632.1972.tb00458.x.
  • Cho, S.-H., D. M. Lambert, and Z. Chen. 2010. Geographically weighted regression bandwidth selection and spatial autocorrelation: An empirical example using Chinese agriculture data. Applied Economics Letters 17:767–72. doi:10.1080/13504850802314452.
  • Cliff, A. D., and J. K. Ord. 1973. Spatial autocorrelation. London: Pion.
  • Farber, S., and A. Páez. 2007. A systematic investigation of cross-validation in GWR model estimation: Empirical analysis and Monte Carlo simulations. Journal of Geographical Systems 9 (4):371–96. doi:10.1007/s10109-007-0051-3.
  • Finley, A. O. 2011. Comparing spatially varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods in Ecology and Evolution 2 (2):143–54. doi:10.1111/j.2041-210X.2010.00060.x.
  • Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2002. Geographically weighted regression: The analysis of spatially varying relationships. West Sussex, UK: Wiley.
  • Fotheringham, A. S., R. Crespo, and J. Yao. 2015. Geographical and temporal weighted regression (GTWR). Geographical Analysis 47 (4):431–52. doi:10.1111/gean.12071.
  • Fotheringham, A. S., and T. M. Oshan. 2016. Geographically weighted regression and multicollinearity: Dispelling the myth. Journal of Geographical Systems 18 (4):303–29. doi:10.1007/s10109-016-0239-5.
  • Fotheringham, A. S., W. Yang, and W. Kang. 2017. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers. 6: 1247–65. doi:10.1080/24694452.2017.1352480.
  • Gamerman, D., A. R. B. Moreira, and H. Rue. 2003. Space-varying regression models: Specifications and simulation. Computational Statistics and Data Analysis 42:513–33. doi:10.1016/S0167-9473(02)00211-6.
  • Geary, R. C. 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5 (3):115–46. doi:10.2307/2986645.
  • Gelfand, A. E., H. J. Kim, C. F. Sirmans, and S. Banerjee. 2003. Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association 98 (462):387–96. doi:10.1198/016214503000170.
  • Gollini, I., B. Lu, M. Charlton, C. Brunsdon, and P. Harris. 2015. GWmodel: An R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistical Software 63 (17):1–50. doi:10.18637/jss.v063.i17.
  • Goodchild, M. F. 2004. The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers 94 (2):300–303. doi:10.1111/j.1467-8306.2004.09402008.x.
  • Griffith, D. A. 2000. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra & Its Applications 321 (1–3):95–112. doi:10.1016/S0024-3795(00)00031-8.
  • Griffith, D. A. 2002. A spatial filtering specification for the auto-Poisson model. Statistics & Probability Letters 58 (3):245–51. doi:10.1016/S0167-7152(02)00099-8.
  • Griffith, D. A. 2003. Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Berlin: Springer Science & Business Media.
  • Griffith, D. A. 2004. A spatial filtering specification for the auto-logistic model. Environment and Planning A 36 (10):1791–1811. doi:10.1068/a36247.
  • Griffith, D. A. 2008. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A 40 (11):2751–69. doi:10.1068/a38218.
  • Griffith, D. A. 2012. Space, time, and space–time eigenvector filter specifications that account for autocorrelation. Estadística Española 54 (177):7–34.
  • Griffith, D. A. 2013. Estimating missing data values for georeferenced Poisson counts. Geographical Analysis 45 (3):259–84. doi:10.1111/gean.12015.
  • Griffith, D. A.. 2017. Some robustness assessments of Moran eigenvector spatial filtering. Spatial Statistics 22 (2):155–79. doi:10.1016/j.spasta.2017.09.001.
  • Griffith, D. A., D. M. Fischer, and J. P. LeSage. 2017. The spatial autocorrelation problem in spatial interaction modelling: A comparison of two common solutions. Letters in Spatial and Resource Sciences 10 (1):75–86. doi:10.1007/s12076-016-0172-8.
  • Harris, P., C. Brunsdon, and A. S. Fotheringham. 2011. Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor. Stochastic Environmental Research and Risk Assessment 25 (2):123–38. doi:10.1007/s00477-010-0444-6.
  • Harris, P., C. Brunsdon, B. Lu, T. Nakaya, and M. Charlton. 2017. Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models. Spatial Statistics 21:241–61. doi:10.1016/j.spasta.2017.07.006.
  • Harris, P., A. S. Fotheringham, R. Crespo, and M. Charlton. 2010. The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets. Mathematical Geosciences 42 (6):657–80. doi:10.1007/s11004-010-9284-7.
  • Harris, P., A. S. Fotheringham, and S. Juggins. 2010. Robust geographically weighted regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Annals of the Association of American Geographers 100 (2):286–306. doi:10.1080/00045600903550378.
  • Helbich, M., and D. A. Griffith. 2016. Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches. Computers, Environment and Urban Systems 57:1–11. doi:10.1016/j.compenvurbsys.2015.12.002.
  • Hu, M, Z. Li, J. Wang, L. Jia, S. Lai, Y. Guo, D. Zhao, and W. Yang. 2012. Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models. PLoS ONE 7 (6):e38978. doi:10.1371/journal.pone.0038978.
  • Huang, B., B. Wu, and M. Barry. 2010. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science 24 (3):383–401. doi:10.1080/13658810802672469.
  • Jaimes, N. B. P., J. B. Sendra, M. G. Delgado, and R. F. Plata. 2010. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography 30 (4):576–91. doi:10.1016/j.apgeog.2010.05.004.
  • Jones, J. P., III, and E. Casetti. 1992. Applications of the expansion method. London and New York: Routledge.
  • Kordi, M., and A. S. Fotheringham. 2016. Spatially weighted interaction models (SWIM). Annals of the American Association of Geographers 106 (5):990–1012. doi:10.1080/24694452.2016.1191990.
  • Leong, Y. Y., and J. C. Yue. 2017. A modification to geographically weighted regression. International Journal of Health Geographics 16 (1):11. doi:10.1186/s12942-017-0085-9.
  • LeSage, J. P., and R. K. Pace. 2009. Introduction to spatial econometrics. Boca Raton, FL: CRC.
  • Lloyd, C. D. 2010. Local models for spatial analysis. Boca Raton, FL: CRC.
  • Lu, B., C. Brunsdon, M. Charlton, and P. Harris. 2017. Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science 31 (5):982–98. doi:10.1080/13658816.2016.1263731.
  • Lu, B., M. Charlton, P. Harris, and A. S. Fotheringham. 2014. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science 28 (4):660–81. doi:10.1080/13658816.2013.865739.
  • Lu, B., P. Harris, M. Charlton, and C. Brunsdon. 2014. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Information Science 17 (2):85–101. doi:10.1080/10095020.2014.917453.
  • Lu, B., W. Yang, Y. Ge, and P. Harris. 2018. Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment and Urban Systems 71: 41–57. doi:10.1016/j.compenvurbsys.2018.03.012.
  • Mei, C.-L., N. Wang, and W.-X. Zhang. 2006. Testing the importance of the explanatory variables in a mixed geographically weighted regression model. Environment and Planning A 38:587–98. doi:10.1068/a3768.
  • Mei, C.-L., M. Xu, and N. Wang. 2016. A bootstrap test for constant coefficients in geographically weighted regression models. International Journal of Geographical Information Science 30:1622–43. doi:10.1080/13658816.2016.1149181.
  • Murakami, D. 2017. Spmoran: An R package for Moran’s eigenvector-based spatial regression analysis. ArXiv 1703.04467.
  • Murakami, D., and D. A. Griffith. 2015. Random effects specifications in eigenvector spatial filtering: A simulation study. Journal of Geographical Systems 17 (4) 311–31. doi:10.1007/s10109-015-0213-7.
  • Murakami, D., and D. A. Griffith.. 2018. Eigenvector spatial filtering for large data sets: Fixed and random effects approaches. Geographical Analysis. doi: 10.1111/gean.12156.
  • Murakami, D., and M. Tsutsumi. 2015. Area-to–point parameter estimation with geographically weighted regression. Journal of Geographical Systems 17 (3):207–25. doi:10.1007/s10109-015-0212-8.
  • Murakami, D., T. Yoshida, H. Seya, D. A. Griffith, and Y. Yamagata. 2017. A Moran coefficient–based mixed effects approach to investigate spatially varying relationships. Spatial Statistics 19:68–89. doi:10.1016/j.spasta.2016.12.001.
  • Nakaya, T. 2001. Local spatial interaction modelling based on the geographically weighted regression approach, GeoJournal 53:347–58. doi:10.1023/A:1020149315435.
  • Nakaya, T. 2015. Geographically weighted generalized linear modeling. In Geocomputation: A practical primer, ed. C. Brunsdon and A. Singleton, 201–20. London: Sage.
  • Nakaya, T., A. S. Fotheringham, C. Brunsdon, and M. Charlton. 2005. Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine 24 (17):2695–2717. doi:10.1002/sim.2129.
  • Ndiath, M. N., B. Cisse, J. L. Ndiaye, J. F. Gomis, O. Bathiery, A. T. Dia, O. Gaye, and B. Faye. 2015. Application of geographically-weighted regression analysis to assess risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. Malaria Journal 14:463. doi:10.1186/s12936-015-0976-9.
  • Oshan, T. M., and A. S. Fotheringham. 2017. Comparison of spatially varying regression coefficient estimates using geographically weighted and spatial-filter-based techniques. Geographical Analysis. 50:53–75. doi:10.1111/gean.12133.
  • Paciorek, C. J. 2010. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Statistical Science: A Review Journal of the Institute of Mathematical Statistics 25 (1):107. doi:10.1214/10-STS326.
  • Páez, A., S. Farber, and D. Wheeler. 2011. A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships. Environment and Planning A 43 (12):2992–3010. doi:10.1068/a44111.
  • Páez, A., F. Long, and S. Farber. 2008. Moving window approaches for hedonic price estimation: An empirical comparison of modelling techniques. Urban Studies 45 (8):1565–81. doi:10.1177/0042098008091491.
  • Sampson, P. D., D. Damian, and P. Guttorp. 2001. Advances in modeling and inference for environmental processes with nonstationary spatial covariance. National Research Centre for Statistics and the Environment Technical Report Series 61:2001.
  • Seya, H., D. Murakami, M. Tsutsumi, and Y. Yamagata. 2015. Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geographical Analysis 47 (3):284–99. doi:10.1111/gean.12054.
  • Wheeler, D. C. 2007. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A 39 (10):2464–81. doi:10.1068/a38325.
  • Wheeler, D. C. 2009. Simultaneous coefficient penalization and model selection in geographically weighted regression: The geographically weighted lasso. Environment and Planning A 41 (3):722–42. doi:10.1068/a40256.
  • Wheeler, D. C., and C. A. Calder. 2007. An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. Journal of Geographical Systems 9 (2):145–66. doi:10.1007/s10109-006-0040-y.
  • Wheeler, D. C., and M. Tiefelsdorf. 2005. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems 7 (2):161–87. doi:10.1007/s10109-005-0155-6.
  • Wheeler, D. C., and L. A. Waller. 2009. Comparing spatially varying coefficient models: A case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. Journal of Geographical Systems 11 (1):1–22. doi:10.1007/s10109-008-0073-5.
  • Yang, W. 2014. An extension of geographically weighted regression with flexible bandwidths. PhD dissertation, University of St. Andrews.
  • Yang, W., A. S. Fotheringham, and P. Harris. 2011. Model selection in GWR: The development of a flexible bandwidth GWR. In The 11th International Conference on GeoComputation, 20–22. London, UK.
  • Yang, W., A. S. Fotheringham, and P. Harris. 2012. An extension of geographically weighted regression with flexible bandwidths. In GISRUK 2012, Paper no. 79. Lancaster, UK.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.