1,805
Views
8
CrossRef citations to date
0
Altmetric
Articles

Tobler’s First Law in GeoAI: A Spatially Explicit Deep Learning Model for Terrain Feature Detection under Weak Supervision

ORCID Icon, &
Pages 1887-1905 | Received 15 Jul 2020, Accepted 10 Nov 2020, Published online: 23 Apr 2021

References

  • Anselin, L. 1995. Local indicators of spatial association—LISA. Geographical Analysis 27 (2): 93–115.
  • Arundel, S. T., W. Li, and X. Zhou. 2018. The effect of resolution on terrain feature extraction. PeerJ Preprints 6:e27072v1. doi: https://doi.org/10.7287/peerj.preprints.27072v1.
  • Barrett, B., and G. P. Petropoulos. 2013. Satellite remote sensing of surface soil moisture. In Remote sensing of energy fluxes and soil moisture content, ed. G. P. Petropoulos, 85–111. Boca Raton, FL: CRC Press.
  • Bejiga, M. B., A. Zeggada, A. Nouffidj, and F. Melgani. 2017. A convolutional neural network approach for assisting avalanche search and rescue operations with UAV imagery. Remote Sensing 9 (2):100. doi: https://doi.org/10.3390/rs9020100.
  • Bilen, H., and A. Vedaldi. 2016. Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, ed. L. Agapito, T. Berg, J. Kosecka, and L. Zelnik-Manor, 2846–54. Las Vegas: IEEE.
  • Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65 (1):2–16. doi: https://doi.org/10.1016/j.isprsjprs.2009.06.004.
  • Cheng, G., J. Han, and X. Lu. 2017. Remote sensing image scene classification: Benchmark and state of the art. Proceedings of the IEEE 105 (10):1865–83. doi: https://doi.org/10.1109/JPROC.2017.2675998.
  • Cheng, G., J. Han, P. Zhou, and D. Xu. 2019. Learning rotation-invariant and Fisher discriminative convolutional neural networks for object detection. IEEE Transactions on Image Processing 28 (1):265–78. doi: https://doi.org/10.1109/TIP.2018.2867198.
  • Cheng, G., P. Zhou, and J. Han. 2016. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 54 (12):7405–15. doi: https://doi.org/10.1109/TGRS.2016.2601622.
  • Ding, J., N. Xue, Y. Long, G.-S. Xia, and Q. Lu. 2018 Learning ROI transformer for detecting oriented objects in aerial images. arXiv:1812.00155.
  • Edwards, C. S., K. J. Nowicki P. R. Christensen, J. Hill, N. Gorelick, and K. Murray. 2011. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi‐spectral data. Journal of Geophysical Research: Planets 116(E10). doi: https://doi.org/10.1029/2010JE003755.
  • Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2003. Geographically weighted regression: The analysis of spatially varying relationships. Chichester, UK: Wiley.
  • Gahegan, M. 2020. Fourth paradigm GIScience? Prospects for automated discovery and explanation from data. International Journal of Geographical Information Science 34 (1):1–21. doi: https://doi.org/10.1080/13658816.2019.1652304.
  • Gao, M., A. Li, R. Yu, V. I. Morariu, and L. S. Davis. 2018. C-WSL: Count-guided weakly supervised localization. In Proceedings of the European conference on computer vision (ECCV), 152–68. Munich, Germany, September 8–14.
  • Gao, Y., et al. 2019. C-MIDN: Coupled multiple instance detection network with segmentation guidance for weakly supervised object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 9834–43. Seoul, Korea, October 27–November 2, 2019.
  • Goodchild, M. F. 2004. The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers 94 (2): 300–303.
  • Goodchild, M. F., and L. L. Hill. 2008. Introduction to digital gazetteer research. International Journal of Geographical Information Science 22 (10):1039–44. doi: https://doi.org/10.1080/13658810701850497.
  • Han, J., D. Zhang, G. Cheng, L. Guo, and J. Ren. 2015. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing 53 (6):3325–37. doi: https://doi.org/10.1109/TGRS.2014.2374218.
  • Hill, L. L., J. Frew, and Q. Zheng. 1999. Geographic names: The implementation of a gazetteer in a georeferenced digital library. D-Lib 5 (1). doi: https://doi.org/10.1045/january99-hill.
  • Hosang, J., R. Benenson, P. Dollár, and B. Schiele. 2016. What makes for effective detection proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (4):814–30. doi: https://doi.org/10.1109/TPAMI.2015.2465908.
  • Hsu, C. Y., and W. Li. 2020. Learning from counting: Leveraging temporal classification for weakly supervised object localization and detection. The 31st British Machine Vision Virtual Conference, September 7-10, 2020 (virtual), Paper ID: 0621. https://www.bmvc2020-conference.com/assets/papers/0621.pdf
  • Jasiewicz, J., and T. F. Stepinski. 2013. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 182:147–56. doi: https://doi.org/10.1016/j.geomorph.2012.11.005.
  • Kamusoko, C. 2017. Importance of remote sensing and land change modeling for urbanization studies. In Urban development in Asia and Africa, ed. Y. Murayama, C. Kamusoko, A. Yamashita, R. C. Estoque, 3–10. Singapore: Springer.
  • Li, H., X. Dou, C. Tao, Z. Hou, J. Chen, J. Peng, M. Deng, and L. Zhao. 2017. RSI-CB: A large scale remote sensing image classification benchmark via crowdsource data. arXiv:1705.10450.
  • Li, W. 2020. GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science 20 (20):71–77. doi: https://doi.org/10.5311/JOSIS.2020.20.658.
  • Li, W., and C.-Y. Hsu. 2020. Automated terrain feature identification from remote sensing imagery: A deep learning approach. International Journal of Geographical Information Science 34 (4):637–60. doi: https://doi.org/10.1080/13658816.2018.1542697.
  • Li, W., B. Zhou, C. Y. Hsu, Y. Li, and F. Ren. 2017. Recognizing terrain features on terrestrial surface using a deep learning model. An example with crater detection. In Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, ed. H. Mao, Y. Hu, and B. Kar, 33–36. Los Angeles: ACM.
  • Liao, M., Z. Zhu, B. Shi, G.-S. Xia, and X. Bai. 2018. Rotation-sensitive regression for oriented scene text detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 5909–18. Salt Lake City, UT, June 18–22.
  • Lindsay, J. B., and K. Dhun. 2015. Modelling surface drainage patterns in altered landscapes using LiDAR. International Journal of Geographical Information Science 29 (3):397–411. doi: https://doi.org/10.1080/13658816.2014.975715.
  • Liu, K., and G. Mattyus. 2015. Fast multiclass vehicle detection on aerial images. IEEE Geoscience and Remote Sensing Letters 12:1938–42. doi: https://doi.org/10.1109/LGRS.2015.2439517.
  • Long, Y., Y. Gong, Z. Xiao, and Q. Liu. 2017. Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing 55 (5):2486–98. doi: https://doi.org/10.1109/TGRS.2016.2645610.
  • Micheletti, N., L. Foresti, S. Robert, M. Leuenberger, A. Pedrazzini, M. Jaboyedoff, and M. Kanevski. 2014. Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences 46 (1):33–57. doi: https://doi.org/10.1007/s11004-013-9511-0.
  • Ren, S., K. He, R. Girshick, and J. Sun. 2016. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (6):1137–49.
  • Robbins, S. J., and B. M. Hynek. 2012. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets 117 (E5). doi: https://doi.org/10.1029/2011JE003966.
  • Tang, P., X. Wang, X. Bai, and W. Liu. 2017. Multiple instance detection network with online instance classifier refinement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), ed. R. Chellappa, Z. Zhang, and A. Hoogs, 2843–51. Honolulu, HI: IEEE.
  • Tang, P., X. Wang, A. Wang, Y. Yan, W. Liu, J. Huang, and A. Yuille. 2018. Weakly supervised region proposal network and object detection. In Proceedings of the European Conference on Computer Vision (ECCV2018), ed. V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, 352–68. Cham, Switzerland: Springer.
  • Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46:234–40. doi: https://doi.org/10.2307/143141.
  • Tomaszewski, B., S. Tibbets, Y. Hamad, and N. Al-Najdawi. 2016. Infrastructure evolution analysis via remote sensing in an urban refugee camp—Evidence from Za’atari. Procedia Engineering 159:118–23. doi: https://doi.org/10.1016/j.proeng.2016.08.134.
  • Uijlings, J. R., K. E. Van De Sande, T. Gevers, and A. W. Smeulders. 2013. Selective search for object recognition. International Journal of Computer Vision 104 (2):154–71. doi: https://doi.org/10.1007/s11263-013-0620-5.
  • Xia, G.-S., J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and X. Lu. 2017. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing 55 (7):3965–81. doi: https://doi.org/10.1109/TGRS.2017.2685945.
  • Xu, Z., X. Xu, L. Wang, R. Yang, and F. Pu. 2017. Deformable convnet with aspect ratio constrained nms for object detection in remote sensing imagery. Remote Sensing 9 (12):1312. doi: https://doi.org/10.3390/rs9121312.
  • Yang, Y., and S. Newsam. 2010. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, ed. D. Agrawal and P. Zhang, 270–79. New York: ACM. doi: https://doi.org/10.1145/1869790.1869829.
  • Yu, Y., H. Guan, and Z. Ji. 2015. Rotation-invariant object detection in high-resolution satellite imagery using superpixel-based deep Hough forests. IEEE Geoscience and Remote Sensing Letters 12 (11):2183–87. doi: https://doi.org/10.1109/LGRS.2015.2432135.
  • Zhang, D., J. Han, G. Cheng, Z. Liu, S. Bu, and L. Guo. 2014. Weakly supervised learning for target detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters 12:701–5.
  • Zhang, Z., R. Jiang, S. Mei, S. Zhang, and Y. Zhang. 2020. Rotation-invariant feature learning for object detection in VHR optical remote sensing images by double-net. IEEE Access 8:20818–27. doi: https://doi.org/10.1109/ACCESS.2019.2960931.
  • Zhong, Y., X. Han, and L. Zhang. 2018. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing 138:281–94. doi: https://doi.org/10.1016/j.isprsjprs.2018.02.014.
  • Zhou, B., A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. 2014. Object detectors emerge in deep scene CNNs. arXiv:1412.6856.
  • Zhou, P., G. Cheng, Z. Liu, S. Bu, and X. Hu. 2016. Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping. Multidimensional Systems and Signal Processing 27 (4):925–44. doi: https://doi.org/10.1007/s11045-015-0370-3.
  • Zhou, W., S. Newsam, C. Li, and Z. Shao. 2018. PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval. ISPRS Journal of Photogrammetry and Remote Sensing 145:197–209. doi: https://doi.org/10.1016/j.isprsjprs.2018.01.004.
  • Zhou, X., W. Li, and S. T. Arundel. 2019. A spatio-contextual probabilistic model for extracting linear features in hilly terrains from high-resolution DEM data. International Journal of Geographical Information Science 33 (4):666–86. doi: https://doi.org/10.1080/13658816.2018.1554814.
  • Zhu, D., F. Zhang, S. Wang, Y. Wang, X. Cheng, Z. Huang, and Y. Liu. 2020. Understanding place characteristics in geographic contexts through graph convolutional neural networks. Annals of the American Association of Geographers 110 (2):408–20. doi: https://doi.org/10.1080/24694452.2019.1694403.
  • Zitnick, C. L., and P. Dollár. 2014. Edge boxes: Locating object proposals from edges. In Proceedings of the European Conference on Computer Vision, ed. D. Fleet, T. Paidla, B Schiele, and T. Tuylelaars, 391–405. Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.