376
Views
0
CrossRef citations to date
0
Altmetric
Articles

An Impact of Short-Term Climate Oscillations in the Late Pleniglacial and Lateglacial Interstadial on Sedimentary Processes and the Pedogenic Record in Central Poland

ORCID Icon, ORCID Icon, , , , , , , , , & show all
Pages 46-70 | Received 13 Sep 2021, Accepted 22 Apr 2022, Published online: 15 Aug 2022

References

  • Aitken, M. J. 1985. Thermoluminescence dating. London: Academic Press.
  • Ammann, B., J. Schwander, U. Eicher, U. J. van Raden, D. Colombaroli, J. F. N. van Leeuwen, H. Lischke, S. J. Brooks, K. Novakova, M. R. van Hardenbroek, et al. 2013. Biotic responses to rapid warming at Termination 1a at Gerzensee (Central Europe)—Synthesis and hypotheses on primary succession, nutrients, albedo and ecological interactions. Palaeogeography Palaeoclimatology Palaeoecology 391:111–31. doi: 10.1016/j.quaint.2012.07.071.
  • Berger, G. W. 2010. An alternate form of probability-distribution plot for De values. Ancient TL 28:11–22.
  • Bockheim, J. G. 2010. Evolution of desert pavements and the vesicular layer in soils of the Transantarctic Mountains. Geomorphology 118 (3–4):433–43. doi: 10.1016/j.geomorph.2010.02.012.
  • Bos, J. A. A., P. De Smedt, H. Demiddele, W. Z. Hoek, R. Langohr, V. Marcelino, N. Van Asch, D. Van Damme, T. Van der Meeren, J. Verniers, et al. 2017. Multiple oscillations during the Lateglacial as recorded in a multi-proxy, high-resolution record of the Moervaart palaeolake (NW Belgium). Quaternary Science Reviews 162:26–41. doi: 10.1016/j.quascirev.2017.02.005.
  • Bos, J. A. A., P. De Smedt, H. Demiddele, W. Hoek, R. Langohr, V. Marcelino, N. Van Asch, D. Van Damme, T. Van Der Meeren, J. Verniers, et al. 2018. Weichselian Lateglacial environmental and vegetation development in the Moervaart palaeolake area (NW Belgium): Implications for former human occupation patterns. Review of Palaeobotany and Palynology 248:1–14. doi: 10.1016/j.revpalbo.2017.09.006.
  • Bos, J. A. A., F. Verbruggen, S. Engels, and P. Crombé. 2013. The influence of environmental changes on local and regional vegetation patterns at Rieme, (NW Belgium): Implications for Final Palaeolithic habitation. Vegetation History and Archaeobotany 22 (1):17–38. doi: 10.1007/s00334-012-0356-0.
  • Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51 (1):337–60. doi: 10.1017/S0033822200033865.
  • Christiansen, H. H., and H. Svensson. 1998. Windpolished boulders as indicators of a Late Weichselian wind regime in Denmark in relation to neighbouring areas. Permafrost and Periglacial Processes 9 (1):1–21. doi: 10.1002/(SICI)1099-1530(199801/03)9:1<1::AID-PPP271>3.0.CO;2-X.
  • Crombé, P., J. A. Bos, F. Cruz, and J. Verhegge. 2020. Repeated aeolian deflation during the Allerød/GI-1a-c in the coversand lowland of NW Belgium. Catena 188:104453. doi: 10.1016/j.catena.2020.104453.
  • Derese, C., D. A. G. Vandenberghe, M. Van Gils, F. Mees, E. Paulissen, and P. Van Den Haute. 2012. Final Palaeolithic settlements of the Campine region (NE Belgium) in their environmental context: Optical age constraints. Quaternary International 251:7–21. doi: 10.1016/j.quaint.2011.03.023.
  • Galbraith, R. F., R. G. Roberts, G. M. Laslett, H. Yoshida, and J. M. Olley. 1999. Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41 (2):339–1857. doi: 10.1111/j.1475-4754.1999.tb00987.x.
  • Good, T. R., and I. D. Bryant. 1985. Fluvio-aeolian sedimentation—An example from Banks Island, N.W.T., Canada. Geografiska Annaler 67 (1–2):33–46. doi: 10.1080/04353676.1985.11880128.
  • Goździk, J. 2000. Aeolian cover sands in the south-eastern part of the Łódź region. In2000 Aeolian processes in different landscape zones: Dissertations of Faculty of Earth Sciences vol. 5, ed. R. J. Dulias and J. Pełka-Gościniak, 80–8. Sosnowiec, Poland: University of Silesia.
  • Gozdzik, J. S., and H. M. French. 2004. Apparent upfreezing of stones in late‐Pleistocene coversand, Bełchatów vicinity. Permafrost and Periglacial Processes 15 (4):359–66. doi: 10.1002/ppp.491.
  • Guerin, G., N. Mercier, and G. Adamiec. 2011. Dose-rate conversion factors: Update. Ancient TL 29:5–8.
  • Holloway, J. E., and A. G. Lewkowicz. 2020. Half a century of discontinuous permafrost persistence and degradation in western Canada. Permafrost and Periglacial Processes 31 (1):85–96. doi: 10.1002/ppp.2017.
  • Hunter, R. E. 1977. Basic types of stratification in small eolian dunes. Sedimentology 24 (3):361–87. doi: 10.1111/j.1365-3091.1977.tb00128.x.
  • Hunter, R. E., and D. M. Rubin. 1983. Interpreting cyclic crossbedding, with an example from the Navajo Sandstone. In Eolian sediments and processes, development in sedimentology, vol. 38, ed. M. E. Brookfield and T. S. Ahlbrandt, 407–27. Amsterdam: Elsevier.
  • Jahn, R., H. P. Blume, V. B. Asio, O. Spaargaren, and P. Schad. 2006. Guidelines for soil description. Rome: FAO.
  • James, M., A. G. Lewkowicz, S. L. Smith, and C. M. Miceli. 2013. Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada. Environmental Research Letters 8 (4):045013. doi: 10.1088/1748-9326/8/4/045013.
  • Jankowski, M. 2012. Lateglacial soil paleocatena in inland-dune area of the Toruń Basin, Northern Poland. Quaternary International 265:116–25. doi: 10.1016/j.quaint.2012.02.006.
  • Kaiser, K., A. Hilgers, N. Schlaak, M. Jankowski, P. Kühn, S. Bussemer, and K. Przegiętka. 2009. Palaeopedological marker horizons in northern central Europe: Characteristics of Lateglacial Usselo and Finow soils. Boreas 38 (3):591–609. doi: 10.1111/j.1502-3885.2008.00076.x.
  • Kaiser, K., T. Schneider, M. Küster, E. Dietze, A. Fülling, S. Heinrich, C. Kappler, O. Nelle, M. Schult, M. Theuerkauf, et al. 2020. Palaeosols and their cover sediments of a glacial landscape in northern central Europe: Spatial distribution, pedostratigraphy and evidence on landscape evolution. Catena 193:104647. doi: 10.1016/j.catena.2020.104647.
  • Kasse, C. 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and Central Europe. Progress in Physical Geography 26:507–32. doi: 10.1191/0309133302pp350ra.
  • Kasse, C., and G. Aalbersberg. 2019. A complete Late Weichselian and Holocene record of aeolian coversands, drift sands and soils forced by climate change and human impact, Ossendrecht, the Netherlands. Netherlands Journal of Geosciences 98:1–22. doi: 10.1017/njg.2019.3.
  • Kasse, C., S. J. P. Bohncke, J. Vandenberghe, and G. Gabris. 2010. Fluvial style changes during the last glacial–interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists' Association 121 (2):180–94. doi: 10.1016/j.pgeola.2010.02.005.
  • Kasse, C., R. T. Van Balen, S. J. P. Bohncke, J. Wallinga, and M. Vreugdenhil. 2017. Climate and base-level controlled fluvial system change and incision during the last glacial–interglacial transition, Roer river, the Netherlands–western Germany. Netherlands Journal of Geosciences 96 (2):71–92. doi: 10.1017/njg.2016.50.
  • Kasse, C., D. Vandenberghe, F. De Corte, and P. Van Den Haute. 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): Sedimentary environments, climate record and age. Journal of Quaternary Science 22 (7):695–708. doi: 10.1002/jqs.1087.
  • Kasse, C., H. A. G. Woolderink, M. E. Kloos, and W. Z. Hoek. 2020. Source-bordering aeolian dune formation along the Scheldt River (southern Netherlands–northern Belgium) was caused by Younger Dryas cooling, high river gradient and southwesterly summer winds. Netherlands Journal of Geosciences 99:13–15. doi: 10.1017/njg.2020.15.
  • Klatkowa, H., J. Czyż, and J. Forysiak. 1999. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Szadek wraz z objaśnieniami [Detailed geological map of Poland in scale 1:50 000, sheet Szadek with explanations]. Warsaw, Poland: PIG.
  • Kocurek, G. 1988. First-order and super bounding surfaces in eolian sequences—Bounding surfaces revisited. In Late Paleozoic and Mesozoic eolian deposits of the Western interior of the United States: Sedimentary geology, vol. 56, ed. G. Kocurek, 193–206. Amsterdam: Elsevier.
  • Kolstrup, E., A. Murray, and G. Possnert. 2007. Luminescence and radiocarbon ages from laminated Lateglacial aeolian sediments in western Jutland, Denmark. Boreas 36 (3):314–25. doi: 10.1080/03009480601024606.
  • Koster, A. E. 1988. Ancient and modern cold-climate aeolian sand deposition: A review. Journal of Quaternary Science 3 (1):69–83. doi: 10.1002/jqs.3390030109.
  • Kozarski, S., and B. Nowaczyk. 1991. Lithofacies variation and chronostratigraphy of Late Vistulian and Holocene aeolian phenomena in northwestern Poland. Zeitschrift für Geomorphologie N.F., Supplementband 90:107–22.
  • Kreutzer, S., C. Burow, M. Dietze, M. Fuchs, C. Schmidt, M. Fischer, J. Friedrich, S. Riedesel, M. Autzen, and D. Mittelstrass. 2020. Luminescence: Comprehensive luminescence dating data analysis. R package version 0.9.10. Accessed July 28, 2021. https://CRAN.R-project.org/package=Luminescence.
  • Kreutzer, S., C. Schmidt, M. C. Fuchs, M. Dietze, M. Fischer, and M. Fuchs. 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30:1–8.
  • Kruczkowska, B., M. Błaszkiewicz, J. Jonczak, Ł. Uzarowicz, P. Moska, A. Brauer, A. Bonk, and M. Słowiński. 2020. The Late Glacial pedogenesis interrupted by aeolian activity in central Poland—Records from the Lake Gościąż catchment. Catena 185:104286. doi: 10.1016/j.catena.2019.104286.
  • Krüger, S., and M. Damrath. 2020. In search of the Bølling-Oscillation: A new high resolution pollen record from the locus classicus Lake Bølling, Denmark. Vegetation History and Archaeobotany 29 (2):189–211. doi: 10.1007/s00334-019-00736-3.
  • Kurkowski, S., and W. Popielski. 1991. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Gorzkowice wraz z objaśnieniami [Detailed geological map of Poland in scale 1:50 000, sheet Gorzkowice with explanations]. Warsaw, Poland: PIG.
  • Lea, P. D. 1990. Pleistocene periglacial aeolian deposits in southwestern Alaska: Sedimentary facies and depositional processes. Journal of Sedimentary Petrology 60:582–91. doi: 10.1306/212F91F1-2B24-11D7-8648000102C1865D.
  • Manikowska, B. 1991. Vistulian and Holocene aeolian activity, pedostratigraphy and relief evolution in central Poland. Zeitschrift für Geomorphologie N.F., Supplmentband 90:131–41.
  • Manikowska, B. 1995. Aeolian activity differentation in the area of Poland during the period 20-8 ka BP. Biuletyn Peryglacjalny 34:125–66.
  • Manikowska, B. 2002. Fossil paleosols and pedogenetic periods in the evolution of central Poland environment after the Wartian Glaciation. In Paleopedology problems in Poland, ed. B. Manikowska, K. Konecka-Betley, and R. Bednarek, 165–212. Łódź, Poland: Łódzkie Towarzystwo Naukowe.
  • Marks, L., J. Dzierżek, R. Janiszewski, J. Kaczorowski, L. Lindner, A. Majecka, M. Makos, M. Szymanek, A. Tołoczko-Pasek, and B. Woronko. 2016. Quaternary stratigraphy and palaeogeography of Poland. Acta Geologica Polonica 66 (3):410–34. doi: 10.1016/j.quaint.2015.07.047.
  • Miall, A. D. 2006. The geology of fluvial deposits: Sedimentary facies, basin analysis and petroleum geology, 4th ed. Berlin: Springer.
  • Mirosław-Grabowska, J., M. Obremska, E. Zawisza, J. Stańczak, M. Słowiński, and A. Mulczyk. 2020. Biological and geochemical indicators of climatic oscillations during the Last Glacial Termination, the Kaniewo palaeolake (central Poland). Ecological Indicators 114:106301. doi: 10.1016/j.ecolind.2020.106301.
  • Mol, J. 1997. Fluvial response to Weichselian climate changes in the Niederlausitz (Germany). Journal of Quaternary Science 12 (1):43–60. doi: 10.1002/(SICI)1099-1417(199701/02)12:1<43::AID-JQS291>3.0.CO;2-0.
  • Moska, P. 2019. Luminescence dating of Quaternary sediments—Some practical aspects. Studia Quaternaria 36:161–69. doi: 10.24425/sq.2019.126387.
  • Moska, P., A. Bluszcz, G. Poręba, K. Tudyka, G. Adamiec, A. Szymak, and A. Przybyła. 2021. Luminescence dating procedures at Gliwice luminescence dating laboratory. Geochronometria 48 (1):1–15. doi: 10.2478/geochr-2021-0001.
  • Moska, P., Z. Jary, R. J. Sokołowski, G. Poręba, J. Raczyk, M. Krawczyk, J. Skurzyński, P. Zieliński, A. Michczyński, K. Tudyka, et al. 2020. Chronostratigraphy of Late Glacial aeolian activity in SW Poland—A case study from the Niemodlin Plateau. Geochronometria 47 (1):124–37. doi: 10.2478/geochr-2020-0015.
  • Moska, P., R. J. Sokołowski, Z. Jary, P. Zieliński, J. Raczyk, A. Szymak, M. Krawczyk, J. Skurzyński, G. Poręba, M. Łopuch, et al. 2021. Stratigraphy of the Late Glacial and Holocene aeolian series in different sedimentary zones related to the Last Glacial maximum in Poland. Quaternary International 630:65–83. doi: 10.1016/j.quaint.2021.04.004.
  • Murray, A. S., and A. G. Wintle. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32 (1):57–73. doi: 10.1016/S1350-4487(99)00253-X.
  • Nowaczyk, B. 1986. Wiek wydm, ich cechy granulometryczne i strukturalne a schemat cyrkulacji atmosferycznej w Polsce w późnym vistulianie i holocenie [The age of dunes, their textural and structural properties against atmospheric circulation pattern of Poland during the Late Vistulian and Holocene]. In Seria Geografia, vol. 28, ed. A. Jędrzejczak, 1–245. Poznań, Poland: Wyd. Naukowe UAM.
  • Nowaczyk, B. 2000. Development of dunes and eolian cover sands in Poland in the Late Vistulian and Holocene. In Polish geography: Problems, researches, applications, ed. Z. Chojnicki and J. J. Parysek, 133–51. Poznań, Poland: Bogucki Wyd. Naukowe S.C.
  • Petera-Zganiacz, J., and D. Dzieduszyńska. 2017. Palaeoenvironmental proxies for permafrost presence during the Younger Dryas, central Poland. Permafrost and Periglacial Processes 28 (4):726–40. doi: 10.1002/ppp.1956.
  • Poręba, G., K. Tudyka, A. Walencik-Łata, and A. Kolarczyk. 2020. Bias in 238U decay chain members measured by γ-ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine 156:108945. doi: 10.1016/j.apradiso.2019.108945.
  • Prescott, J. R., and L. G. Stephan. 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. In Latitude, altitude and depth dependencies TLS II-1, PACT 6, 17–25 16–25. Council of Europe.
  • Rasmussen, S. O., M. Bigler, S. P. Blockley, T. Blunier, S. L. Buchardt, H. Clausen, I. Cvijanovic, D. Dahl-Jensen, S. J. Johnsen, H. Fischer, et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106:14–28. doi: 10.1016/j.quascirev.2014.09.007.
  • Rdzany, Z. 2009. Rekonstrukcja przebiegu zlodowacenia warty w regionie łódzkim [Reconstruction of the course of theWarta Glaciation in the Łódź region]. Łódź, Poland: Wydawnictwo Uniwersytetu Łódzkiego.
  • Reimer, P. J., W. E. N. Austin, E. Bard, A. Bayliss, J. Blackwell, C. Bronk Ramsey, P. M. Grootes, M. Butzin, H. Cheng, R. L. Edwards, et al. 2020. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62 (4):725–57. doi: 10.1017/RDC.2020.41.
  • Retallack, G. J. 2001. Soils of the past: An introduction to paleopedology, 2nd ed. New York: Blackwell Science.
  • Roman, M., D. Dzieduszyńska, and J. Petera-Zganiacz. 2014. Łódź region and its northern vicinity under Vistulian Glaciation conditions. Quaestiones Geographicae 33 (3):155–63. doi: 10.2478/quageo-2014-0038.
  • Rotnicki, K., J. Rotnicka, and Z. Młynarczyk. 2005. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Trąbczyn wraz z objaśnieniami [Detailed geological map of Poland in scale 1:50 000, sheet Trąbczyn with explanations]. Warsaw, Poland: PIG.
  • Schirmer, W. 1999. Dune phases and fossil soils in the European sand belt. In Dunes and fossil soils: GeoArchaeo-Rhein, vol. 3, ed. W. Schirmer, 11–42. Münster, LIT Verlag.
  • Schwan, J. 1986. The origin of horizontal alternating bedding in Weichselian aeolian sands in northwestern Europe. Sedimentary Geology 49 (1–2):73–108. doi: 10.1016/0037-0738(86)90016-3.
  • Sewerniak, P., M. Jankowski, and M. Dąbrowski. 2017. Effect of topography and deforestation on regular variation of soils on inland dunes in the Toruń Basin (N Poland). Catena 149:318–30. doi: 10.1016/j.actao.2017.06.003.
  • Sharp, R. P. 1963. Wind ripples. The Journal of Geology 71 (5):617–36. doi: 10.1086/626936.
  • Sitzia, L., P. Bertran, J.-J. Bahain, M. D. Bateman, M. Hernandez, H. Garon, G. de Lafontaine, N. Mercier, C. Leroyer, A. Queffelec, et al. 2015. The Quaternary coversands of southwest France. Quaternary Science Reviews 124:84–105. doi: 10.1016/j.quascirev.2015.06.019.
  • Tolksdorf, J. F., and K. Kaiser. 2012. Holocene aeolian dynamics in the European sand‐belt as indicated by geochronological data. Boreas 41 (3):408–21. doi: 10.1111/j.1502-3885.2012.00247.x.
  • Vandenberghe, D. A. G., C. Derese, C. Kasse, and P. Van Den Haute. 2013. Late Weichselian (fluvio-) aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): A high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68:96–113. doi: 10.1016/j.quascirev.2013.02.009.
  • Vandenberghe, J., C. Kasse, S. J. P. Bohncke, and S. Kozarski. 1994. Climate-related river activity at the Weichselian–Holocene transition: A comparative study of the Warta and Maas rivers. Terra Nova 6 (5):476–85. doi: 10.1111/j.1365-3121.1994.tb00891.x.
  • Van der Hammen, T., and T. A. Wijmstra. 1971. The Upper Quaternary of the Dinkel Valley (Twente, Eastern Overijssel, The Netherlands). Mededelingen Rijks Geologische Dienst 22:55–212.
  • Van Huissteden, J., J. Vandenberghe, T. Van Der Hammen, and W. Laan. 2000. Fluvial and aeolian interaction under permafrost condition: Weichselian Late Pleniglacial, Twente, Eastern Netherlands. Catena 40 (3):307–21. doi: 10.1016/S0341-8162(00)00085-0.
  • Wachecka-Kotkowska, L. 2015. Rozwój rzeźby obszaru między Piotrkowem Trybunalskim, Radomskiem a Przedborzem w czwartorzędzie [Development of land relief between Piotrków Trybunalski, Radomsko and Przedbórz in the Quaternary]. Łodź, Poland: Wydawnictwo Uniwersytetu Łódzkiego.
  • Wachecka-Kotkowska, L., and M. Ludwikowska-Kędzia. 2007. Plenivistuliański poziom wysoki w dolinach rzek Luciąży (Równina Piotrkowska/Wzgórza Radomszczańskie) i Belnianki (Góry Świętokrzyskie). Porównanie cech strukturalnych i teksturalnych osadów [Plenivistulian high level in the valleys of the Luciaza rivers (Piotrkowska Plain/Radomszczańskie Hills) and Belnianki (Świętokrzyskie Mountains): Comparison of the structural and textural features of sediments]. Acta Geographica Lodziensia 93:107–32.
  • Walker, M. J. C., M. Berkelhammer, S. Bjorck, L. C. Cwynar, D. A. Fisher, A. J. Long, J. J. Lowe, R. N. Newnham, S. O. Rasmussen, and H. Weiss. 2012. Formal subdivision of the Holocene series/epoch: A discussion paper by a working group of INTIMATE (integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science 27 (7):649–59. doi: 10.1002/jqs.2565.
  • Wysota, W., P. Molewski, and R. J. Sokołowski. 2009. Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland. Quaternary International 207 (1–2):26–41. doi: 10.1016/j.quaint.2008.12.015.
  • Zeeberg, J. J. 1998. The European sand belt in eastern Europe—And comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27 (2):127–39. doi: 10.1111/j.1502-3885.1998.tb00873.x.
  • Zieliński, P. 2016. Regionalne i lokalne uwarunkowania późnovistuliańskiej depozycji eolicznej w środkowej części europejskiego pasa piaszczystego [Regional and local conditions of the Late Vistulian aeolian deposition in the central part of the European Sand Belt]. Lublin, Poland: Wydawnictwo UMCS.
  • Zieliński, P., and K. Issmer. 2008. Propozycja kodu genetycznego osadów środowiska eolicznego. [The proposal of genetic code of aeolian deposits]. Przegląd Geologiczny 56:67–72.
  • Zieliński, P., R. J. Sokołowski, S. Fedorowicz, B. Woronko, B. Hołub, M. Jankowski, M. Kuc, and M. Tracz. 2016. Depositional conditions on an alluvial fan at the turn of Weichselian and Holocene—Case study of Żmigród Basin (SW Poland). Geologos 22 (2):105–20. doi: 10.1515/logos-2016-0012.
  • Zieliński, P., R. J. Sokołowski, S. Fedorowicz, and I. Zaleski. 2014. Periglacial structures within fluvio-aeolian successions of the end of the Last Glaciation—Examples from SE Poland and NW Ukraine. Boreas 43 (3):712–21. doi: 10.1111/bor.12052.
  • Zieliński, P., R. J. Sokołowski, M. Jankowski, K. Standzikowski, and S. Fedorowicz. 2019. The climatic control of sedimentary environment changes during the Weichselian—An example from the Middle Vistula Region (eastern Poland). Quaternary International 501:120–34. doi: 10.1016/j.quaint.2018.04.036.
  • Zieliński, P., R. J. Sokołowski, B. Woronko, M. Jankowski, S. Fedorowicz, I. Zaleski, A. Molodkov, and P. Weckwerth. 2015. The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International 386:30–41. doi: 10.1016/j.quaint.2014.08.013.
  • Ziomek, J. 1989. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Bełchatów wraz z objaśnieniami [Detailed geological map of Poland in scale 1:50 000, sheet Bełchatów with explanations]. Warsaw, Poland: PIG.
  • Zolitschka, B., P. Francus, A. E. Ojala, and A. Schimmelmann. 2015. Varves in lake sediments—A review. Quaternary Science Reviews 117:1–41. doi: 10.1016/j.quascirev.2015.03.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.