98
Views
0
CrossRef citations to date
0
Altmetric
Articles

Estimation of Segment-Averaged Geometric-Hydraulic Relationships as a Function of Depth in Natural Rivers Using Inverse Modeling

, & ORCID Icon
Pages 949-972 | Received 16 Apr 2021, Accepted 24 Oct 2022, Published online: 08 Feb 2023

References

  • Abida, H. 2009. Identification of compound channel flow parameters. Journal of Hydrology and Hydromechanics 57 (3):172–81. doi: 10.2478/v10098-009-0016-y.
  • Afkhami, M., M. Shariat, N. Jaafarzadeh, H. Ghadiri, and R. Nabizadeh. 2007. Regional water quality management for the Karun–Dez River basin, Iran. Water and Environment Journal 21 (3):192–99. doi: 10.1111/j.1747-6593.2007.00070.x.
  • Almeida, T. G., D. T. Walker, and A. M. Warnock. 2018. Estimating river bathymetry from surface velocity observations using variational inverse modeling. Journal of Atmospheric and Oceanic Technology 35 (1):21–34. doi: 10.1175/JTECH-D-17-0075.1.
  • Amiri, S., M. Mazaheri, and N. Bavandpouri Gilan. 2021. Introducing a new method for calculating the spatial and temporal distribution of pollutants in rivers. International Journal of Environmental Science and Technology 18 (12):3777–94. doi: 10.1007/s13762-020-03096-y.
  • Aster, R. C., B. Borchers, and C. H. Thurber. 2018. Parameter estimation and inverse problems. Elsevier.
  • Balagurusamy, E. 1999. Numerical methods. New Delhi: McGraw-Hill Education.
  • Barton, G. J., E. H. Moran, and C. Berenbrock. 2004. Surveying cross sections of the Kootenai River between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada. Report No. 2004-1045, U.S. Geological Survey, Reston, VA. doi: 10.3133/ofr20041045.
  • Becker, L., and W. W. G. Yeh. 1972. Identification of parameters in unsteady open channel flows. Water Resources Research 8 (4):956–65. doi: 10.1029/WR008i004p00956.
  • Becker, L., and W. W. G. Yeh. 1973. Identification of multiple reach channel parameters. Water Resources Research 9 (2):326–35. doi: 10.1029/WR009i002p00326.
  • Brayton, R. K., S. W. Directo, G. D. Hatchel, and L. Vidigal. 1979. A new algorithm for statistical circuit design based on quasi-Newton methods and function splitting. IEEE Transactions on Circuits and Systems 26 (9):784–94. doi: 10.1109/TCS.1979.1084701.
  • Brisset, P., J. Monnier, P. A. Garambois, and H. Roux. 2018. On the assimilation of altimetric data in 1D Saint–Venant river flow models. Advances in Water Resources 119:41–59. doi: 10.1016/j.advwatres.2018.06.004.
  • Cunge, J. 1980. Practical aspects of computational river hydraulics. London: Pitman.
  • De Vito, E., L. Rosasco, A. Caponnetto, U. De Giovannini, F. Odone, and P. Bartlett. 2005. Learning from examples as an inverse problem. Journal of Machine Learning Research 6 (5):883–904. https://www.jmlr.org/papers/volume6/devito05a/devito05a.pdf.
  • Dey, S. 2016. Role of river bathymetry in hydraulic modeling of river channels. Accessed March 1, 2020. https://docs.lib.purdue.edu/open_access_theses/940.
  • Ding, Y., and S. S. Wang. 2005. Identification of Manning’s roughness coefficients in channel network using adjoint analysis. International Journal of Computational Fluid Dynamics 19 (1):3–13. doi: 10.1080/10618560410001710496.
  • D’Oria, M., P. Mignosa, and M. G. Tanda. 2014. Bayesian estimation of inflow hydrographs in ungauged sites of multiple reach systems. Advances in Water Resources 63:143–51. doi: 10.1016/j.advwatres.2013.11.007.
  • Durand, M., J. Neal, E. Rodríguez, K. M. Andreadis, L. C. Smith, and Y. Yoon. 2014. Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope. Journal of Hydrology 511:92–104. doi: 10.1016/j.jhydrol.2013.12.050.
  • Fonstad, M. A., and W. A. Marcus. 2005. Remote sensing of stream depths with hydraulically assisted bathymetry (HAB) models. Geomorphology 72 (1–4):320–39. doi: 10.1016/j.geomorph.2005.06.005.
  • Foo, M., N. Bedjaoui, and E. Weyer. 2010. Segmentation of a river using the Saint Venant equations. In Proceedings of IEEE Multiconference on Systems and Control (CCA), 848–53. Yokohama, Japan: IEEE. doi: 10.1109/CCA.2010.5611282.
  • Fread, D. L., and G. F. Smith. 1978. Calibration technique for 1-D unsteady flow models. Journal of the Hydraulics Division 104 (7):1027–44. doi: 10.1061/JYCEAJ.0005026.
  • Garambois, P. A., and J. Monnier. 2015. Inference of effective river properties from remotely sensed observations of water surface. Advances in Water Resources 79:103–20. doi: 10.1016/j.advwatres.2015.02.007.
  • Garbrecht, J. 1990. Analytical representation of cross-section hydraulic properties. Journal of Hydrology 119 (1–4):43–56. doi: 10.1016/0022-1694(90)90033-T.
  • Gessese, A., and M. Sellier. 2012. A direct solution approach to the inverse shallow-water problem. Mathematical Problems in Engineering 2012:1–18. doi: 10.1155/2012/417950.
  • Gleason, C. J. 2015. Hydraulic geometry of natural rivers: A review and future directions. Progress in Physical Geography: Earth and Environment 39 (3):337–60. doi: 10.1177/0309133314567584.
  • Gleason, C. J., and L. C. Smith. 2014. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences of the United States of America 111 (13):4788–91. doi: 10.1073/pnas.1317606111.
  • Hansen, P. C. 1998. Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion. Philadelphia: Society for Industrial and Applied Mathematics.
  • Henderson, F. M. 1996. Open channel flow. New York: MacMillan.
  • Khatibi, R. H., J. J. Williams, and P. R. Wormleaton. 1997. Identification problem of open-channel friction parameters. Journal of Hydraulic Engineering 123 (12):1078–88. doi: 10.1061/(ASCE)0733-9429(1997)123:12(1078).
  • Knoben, W. J., J. E. Freer, and R. A. Woods. 2019. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences 23 (10):4323–31. doi: 10.5194/hess-23-4323-2019.
  • La Torre, D., H. Kunze, F. Mendivil, M. Ruiz Galan, and R. Zaki. 2015. Inverse problems: Theory and application to science and engineering. Mathematical Problems in Engineering. 2015:1–3. doi: 10.1155/2015/796094.
  • Larnier, K., J. Monnier, P. A. Garambois, and J. Verley. 2021. River discharge and bathymetry estimation from SWOT altimetry measurements. Inverse Problems in Science and Engineering 29 (6):759–89. doi: 10.1080/17415977.2020.1803858.
  • Leopold, L. B., and T. Maddock. 1953. The hydraulic geometry of stream channels and some physiographic implications. Washington, DC: U.S. Government Printing Office.
  • Marcus, W. A. 2002. Mapping of stream microhabitats with high spatial resolution hyperspectral imagery. Journal of Geographical Systems 4 (1):113–26. doi: 10.1007/s101090100078.
  • Marcus, W. A., and M. A. Fonstad. 2008. Optical remote mapping of rivers at sub‐meter resolutions and watershed extents. Earth Surface Processes and Landforms 33 (1):4–24. doi: 10.1002/esp.1637.
  • Marcus, W. A., and M. A. Fonstad. 2010. Remote sensing of rivers: The emergence of a subdiscipline in the river sciences. Earth Surface Processes and Landforms 35 (15):1867–72. doi: 10.1002/esp.2094.
  • Mersel, M. K., L. C. Smith, K. M. Andreadis, and M. T. Durand. 2013. Estimation of river depth from remotely sensed hydraulic relationships. Water Resources Research 49 (6):3165–79. doi: 10.1002/wrcr.20176.
  • Nguyen, H. T., and J. D. Fenton. 2005. Identification of roughness in compound channels. In MODSIM 2005 International Congress on Modelling and Simulation, ed. A. Zerger and R. M. Argent, 2512–18. Modelling and Simulation Society of Australia and New Zealand.
  • Nocedal, J., and S. J. Wright. 2006. Large-scale unconstrained optimization. In Numerical optimization, 164–92. New York: Springer.
  • Norouzi, R., H. Arvanaghi, F. Salmasi, D. Farsadizadeh, and M. A. Ghorbani. 2020. A new approach for oblique weir discharge coefficient prediction based on hybrid inclusive multiple model. Flow Measurement and Instrumentation 76:101810. doi: 10.1016/j.flowmeasinst.2020.101810.
  • Osman Akan, A. 2006. Open channel hydraulics. Butterworth-Heinemann, Elsevier. doi: 10.1016/B978-075066857-6/50002-3.
  • Oubanas, H., I. Gejadze, P. O. Malaterre, M. Durand, R. Wei, R. P. Frasson, and A. Domeneghetti. 2018. Discharge estimation in ungauged basins through variational data assimilation: The potential of the SWOT mission. Water Resources Research 54 (3):2405–23. doi: 10.1002/2017WR021735.
  • Oubanas, H., I. Gejadze, P. O. Malaterre, and F. Mercier. 2018. River discharge estimation from synthetic SWOT-type observations using variational data assimilation and the full Saint-Venant hydraulic model. Journal of Hydrology 559:638–47. doi: 10.1016/j.jhydrol.2018.02.004.
  • Pilotti, M. 2016. Extraction of cross sections from digital elevation model for one‐dimensional dam‐break wave propagation in mountain valleys. Water Resources Research 52 (1):52–68. doi: 10.1002/2015WR017017.
  • Pizlo, Z. 2001. Perception viewed as an inverse problem. Vision Research 41 (24):3145–61. doi: 10.1016/S0042-6989(01)00173-0.
  • Rao, S. S. 2009. Engineering optimization: Theory and practice. 4th ed. Hoboken, NJ: Wiley.
  • Richards, K. S. 1976. Complex width-discharge relations in natural river sections. Geological Society of America Bulletin 87 (2):199–206. doi: 10.1130/0016-7606(1976)87%3C199:CWRINR%3E2.0.CO;2.
  • Rodríguez, E., M. Durand, and R. Frasson. 2020. Observing rivers with varying spatial scales. Water Resources Research 56 (9):e2019WR026476. doi: 10.1029/2019WR026476.
  • Roux, H., and D. Dartus. 2005. Parameter identification using optimization techniques in open-channel inverse problems. Journal of Hydraulic Research 43 (3):311–20. doi: 10.1080/00221680509500125.
  • Singh, V. P., and L. Zhang. 2008. At‐a‐station hydraulic geometry relations, 1: Theoretical development. Hydrological Processes 22 (2):189–215. doi: 10.1002/hyp.6411.
  • Szymkiewicz, R. 2008. Application of the simplified models to inverse flood routing in upper Narew River (Poland). Publications of the Institute of Geophysics, Polish Academy of Sciences 405:121–35. http://agp2.igf.edu.pl/agp/files/E-9/9-Szymkiewicz_END-n.pdf.
  • Wasantha Lal, A. M. 1995. Calibration of riverbed roughness. Journal of Hydraulic Engineering 121 (9):664–71. doi: 10.1061/(ASCE)0733-9429(1995)121:9(664).
  • Wood, M., R. Hostache, J. Neal, T. Wagener, L. Giustarini, M. Chini, G. Corato, P. Matgen, and P. Bates. 2016. Calibration of channel depth and friction parameters in the LISFLOOD-FP hydraulic model using medium-resolution SAR data and identifiability techniques. Hydrology and Earth System Sciences 20 (12):4983–97. doi: 10.5194/hess-20-4983-2016.
  • Wormleaton, P. R., and M. Karmegam. 1984. Parameter optimization in flood routing. Journal of Hydraulic Engineering 110 (12):1799–1814. doi: 10.1061/(ASCE)0733-9429(1984)110:12(1799).
  • Wu, Q., S. Amin, S. Munier, A. M. Bayen, X. Litrico, and G. Belaud. 2007. Parameter identification for the shallow water equation using modal decomposition. In Proceedings of the 46th IEEE conference of decision and control, 1584–90. New Orleans, LA: IEEE. doi: 10.1109/CDC.2007.4434678.
  • Wu Q., M. Rafiee A. Tinka, and A. M. Bayen. 2009. Inverse modeling for open boundary conditions in channel network. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 8258–65. Piscataway, NJ: IEEE. doi:10.1109/CDC.2009.5400445.
  • Wu, W. 2007. Computational river dynamics. Boca Raton, FL: CRC Press. doi: 10.4324/9780203938485.
  • Zhang, M. L., and Y. M. Shen. 2007. Study and application of steady flow and unsteady flow mathematical model for channel networks. Journal of Hydrodynamics 19 (5):572–78. doi: 10.1016/S1001-6058(07)60155-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.