171
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessing the Monthly Trends in Precipitable Water Vapor over the Indian Subcontinent

ORCID Icon, ORCID Icon & ORCID Icon
Pages 671-696 | Received 29 Jul 2022, Accepted 31 Oct 2023, Published online: 14 Feb 2024

References

  • Abbott, T. H., T. W. Cronin, and T. Beucler. 2020. Convective dynamics and the response of precipitation extremes to warming in radiative–convective equilibrium. Journal of the Atmospheric Sciences 77 (5):1637–60. doi: 10.1175/JAS-D-19-0197.1.
  • Adams, D. K., H. M. J. Barbosa, and K. G. De Los Ríos. 2017. A spatiotemporal water vapor-deep convection correlation metric derived from the Amazon Dense GNSS Meteorological Network. Monthly Weather Review 145 (1):279–88. doi: 10.1175/MWR-D-16-0140.1.
  • Adams, D. K., S. I. Gutman, K. L. Holub, and D. S. Pereira. 2013. GNSS observations of deep convective time scales in the Amazon. Geophysical Research Letters 40 (11):2818–23. doi: 10.1002/grl.50573.
  • Ali, H., N. Peleg, and H. J. Fowler. 2021. Global scaling of rainfall with dewpoint temperature reveals considerable ocean–land difference. Geophysical Research Letters 48 (15):e2021GL093798. doi: 10.1029/2021GL093798.
  • Allan, R. P., K. M. Willett, V. O. John, and T. Trent. 2022. Global changes in water vapor 1979–2020. Journal of Geophysical Research 127 (12):e2022JD036728. doi: 10.1029/2022JD036728.
  • Baisya, H., S. Pattnaik, V. Hazra, A. Sisodiya, and D. Rai. 2018. Ramifications of atmospheric humidity on monsoon depressions over the Indian subcontinent. Scientific Reports 8 (1):9927. doi: 10.1038/s41598-018-28365-2.
  • Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans. 2017. Future increases in extreme precipitation exceed observed scaling rates. Nature Climate Change 7 (2):128–32. doi: 10.1038/nclimate3201.
  • Bengtsson, L., S. Hagemann, and K. I. Hodges. 2004. Can climate trends be calculated from reanalysis data? Journal of Geophysical Research 109 (D11):536. doi: 10.1029/2004JD004536.
  • Beyk Ahmadi, N., and M. Rahimzadegan. 2021. Improving the accuracy of global precipitation measurement integrated multi-satellite retrievals (GPM IMERG) using atmosphere precipitable water and altitude in climatic regions of Iran. International Journal of Remote Sensing 42 (7):2759–81. doi: 10.1080/01431161.2020.1857878.
  • Bolch, T., J. M. Shea, S. Liu, F. M. Azam, Y. Gao, S. Gruber, W. W. Immerzeel, A. Kulkarni, H. Li, A. A. Tahir, et al. 2019. Status and change of the cryosphere in the extended Hindu Kush Himalaya region. In The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people, ed. P. Wester, A. Mishra, A. Mukherji, and A. B. Shrestha, 209–55. Cham, Switzerland: Springer.
  • Borger, C., S. Beirle, and T. Wagner. 2022. Analysis of global trends of total column water vapour from multiple years of OMI observations. Atmospheric Chemistry and Physics 22 (16):10603–21. doi: 10.5194/acp-22-10603-2022.
  • Brunamonti, S., L. Füzér, T. Jorge, Y. Poltera, P. Oelsner, S. Meier, R. Dirksen, M. Naja, S. Fadnavis, J. Karmacharya, et al. 2019. Water vapor in the Asian summer monsoon anticyclone: Comparison of balloon‐borne measurements and ECMWF data. Journal of Geophysical Research: Atmospheres 124 (13):7053–68. doi: 10.1029/2018JD030000.
  • Chen, B., and Z. Liu. 2016. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. Journal of Geophysical Research 121 (19):11–442. doi: 10.1002/2016JD024917.
  • Chepfer, H., V. Noel, D. Winker, and M. Chiriaco. 2014. Where and when will we observe cloud changes due to climate warming? Geophysical Research Letters 41 (23):8387–95. doi: 10.1002/2014GL061792.
  • Clement, A. C., R. Burgman, and J. R. Norris. 2009. Observational and model evidence for positive low-level cloud feedback. Science 325 (5939):460–64. doi: 10.1126/science.1171255.
  • Dai, A. 2006. Recent climatology, variability, and trends in global surface humidity. Journal of Climate 19 (15):3589–3606. doi: 10.1175/JCLI3816.1.
  • Das, P. K. 2018. The monsoon. New Delhi, India: Ministry of Education, Government of India, National Book Trust of India.
  • Desinayak, N., A. K. Prasad, H. El-Askary, M. Kafatos, and G. R. Asrar. 2022. Snow cover variability and trend over the Hindu Kush Himalayan region using MODIS and SRTM data. Annales Geophysicae 40 (1):67–82. doi: 10.5194/angeo-40-67-2022.
  • Dimri, A. P., D. Niyogi, A. P. Barros, J. Ridley, U. C. Mohanty, T. Yasunari, and D. R. Sikka. 2015. Western disturbances: A review. Reviews of Geophysics 53 (2):225–46. doi: 10.1002/2014RG000460.
  • Dong, B., and A. Dai. 2017. The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Climate Dynamics 49 (1–2):279–96. doi: 10.1007/s00382-016-3342-x.
  • Dumka, U. C., D. G. Kaskaoutis, P. Khatri, S. S. Ningombam, R. Sheoran, S. Jade, T. S. Shrungeshwara, and M. Rupakheti. 2022. Water vapour characteristics and radiative effects at high-altitude Himalayan sites. Atmospheric Pollution Research 13 (2):101303. doi: 10.1016/j.apr.2021.101303.
  • Earth Resources Observation and Science Center. 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). Reston, VA: U.S. Geological Survey. doi: 10.5066/F7J38R2N.
  • Früh, B., and V. Wirth. 2007. Convective available potential energy (CAPE) in mixed phase cloud conditions. Quarterly Journal of the Royal Meteorological Society 133 (624):561–69. doi: 10.1002/qj.39.
  • Goroshi, S., R. Pradhan, R. P. Singh, K. K. Singh, and J. S. Parihar. 2017. Trend analysis of evapotranspiration over India: Observed from long-term satellite measurements. Journal of Earth System Science 126 (8):1–21. doi: 10.1007/s12040-017-0891-2.
  • Gray, W. M. 1975. Tropical cyclone genesis. PhD dissertation, Colorado State University.
  • Groenemeijer, P., T. Pucik, I. Tsonevsky, and P. Bechtold. 2019. An overview of convective available potential energy and convective inhibition provided by NWP models for operational forecasting. European Centre for Medium-Range Weather Forecasts. doi: 10.21957/q392hofrl.
  • Hagemann, S., K. Arpe, and L. Bengtsson. 2005. Validation of the hydrological cycle of ERA-40. ERA-40 Project Report Series, No. 24. European Centre for Medium-Range Weather Forecasts, Reading, UK.
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner. 1984. Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity 29:130–63. doi: 10.1029/GM029p0130.
  • He, J., H. Brogniez, and L. Picon. 2022. Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records. Atmospheric Chemistry and Physics 22 (18):12591–12606. doi: 10.5194/acp-22-12591-2022.
  • Held, I. M., and B. J. Soden. 2000. Water vapor feedback and global warming. Annual Review of Energy and the Environment 25 (1):441–75. doi: 10.1146/annurev.energy.25.1.441.
  • Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz‐Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146 (730):1999–2049. doi: 10.1002/qj.3803.
  • Ho, S. P., L. Peng, C. Mears, and R. A. Anthes. 2018. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013. Atmospheric Chemistry and Physics 18 (1):259–74. doi: 10.5194/acp-18-259-2018.
  • Holloway, C. E., and J. D. Neelin. 2009. Moisture vertical structure, column water vapor, and tropical deep convection. Journal of the Atmospheric Sciences 66 (6):1665–83. doi: 10.1175/2008JAS2806.1.
  • Intergovernmental Panel on Climate Change. 2021. Summary for policymakers. In Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 3–32. Cambridge, UK: Cambridge University Press.
  • Jade, S., T. S. Shrungeshwara, and B. Anil. 2019. Water vapor study using MODIS and GPS data at 64 continuous GPS stations (2002–2017) in Indian subcontinent. Journal of Atmospheric and Solar-Terrestrial Physics 196:105138. doi: 10.1016/j.jastp.2019.105138.
  • Jain, S. K., and V. Kumar. 2012. Trend analysis of rainfall and temperature data for India. Current Science 102 (1):37–49.
  • Javed, A., P. Kumar, K. I. Hodges, D. V. Sein, A. K. Dubey, and G. Tiwari. 2022. Does the recent revival of western disturbances govern the Karakoram anomaly? Journal of Climate 35 (13):4383–4402. doi: 10.1175/JCLI-D-21-0129.1.
  • Jiang, J., T. Zhou, and W. Zhang. 2019. Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in central Asia. Earth and Space Science 6 (7):1129–48. doi: 10.1029/2019EA000654.
  • Jindal, P., P. K. Thapliyal, M. V. Shukla, S. K. Sharma, and D. Mitra. 2020. Trend analysis of atmospheric temperature, water vapour, ozone, methane and carbon-monoxide over few major cities of India using satellite data. Journal of Earth System Science 129 (1):17. doi: 10.1007/s12040-019-1325-0.
  • Jung, M., M. Reichstein, P. Ciais, S. I. Seneviratne, J. Sheffield, M. L. Goulden, G. Bonan, A. Cescatti, J. Chen, R. de Jeu, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467 (7318):951–54. doi: 10.1038/nature09396.
  • Kääb, A., D. Treichler, C. Nuth, and E. Berthier. 2015. Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere 9 (2):557–64. doi: 10.5194/tc-9-557-2015.
  • Kendall, M. G. 1975. Rank correlation methods. London: Griffin.
  • Kim, S., A. Sharma, C. Wasko, and R. Nathan. 2022. Linking total precipitable water to precipitation extremes globally. Earth’s Future.10 (2):e2021EF002473. doi: 10.1029/2021EF002473.
  • Krishnan, R., A. B. Shrestha, G. Ren, R. Rajbhandari, S. Saeed, J. Sanjay, A. Md, R. Syed, Y. Vellore, Q. Xu, et al. 2019. Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people, ed. P. Wester, A. Mishra, A. Mukherji, and A.B. Shrestha, 57–97. Cham, Switzerland: Springer.
  • Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon. 2013. Probable maximum precipitation and climate change. Geophysical Research Letters 40 (7):1402–08. doi: 10.1002/grl.50334.
  • Kunkel, K. E., S. E. Stevens, L. E. Stevens, and T. R. Karl. 2020. Observed climatological relationships of extreme daily precipitation events with precipitable water and vertical velocity in the contiguous United States. Geophysical Research Letters 47 (12):e2019GL086721. doi: 10.1029/2019GL086721.
  • Li, X., and D. Long. 2020. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach. Remote Sensing of Environment 248:111966. doi: 10.1016/j.rse.2020.111966.
  • Lintner, B. R., D. K. Adams, K. A. Schiro, A. M. Stansfield, A. A. Amorim Rocha, and J. D. Neelin. 2017. Relationships among climatological vertical moisture structure, column water vapor, and precipitation over the central Amazon in observations and CMIP5 models. Geophysical Research Letters 44 (4):1981–89. doi: 10.1002/2016GL071923.
  • Liu, B., and Y. Li. 2022. Southwesterly water vapor transport induced by tropical cyclones over the Bay of Bengal during the South Asian monsoon transition period. Journal of Meteorological Research 36 (1):140–53. doi: 10.1007/s13351-022-1070-1.
  • Maharana, P., R. Agnihotri, and A. P. Dimri. 2021. Changing Indian monsoon rainfall patterns under the recent warming period 2001–2018. Climate Dynamics 57 (9–10):2581–93. doi: 10.1007/s00382-021-05823-8.
  • Maharana, P., and A. P. Dimri. 2014. Study of seasonal climatology and interannual variability over India and its subregions using a regional climate model (RegCM3). Journal of Earth System Science 123 (5):1147–69. doi: 10.1007/s12040-014-0447-7.
  • Maharana, P., and A. P. Dimri. 2016. Study of intraseasonal variability of Indian summer monsoon using a regional climate model. Climate Dynamics 46 (3–4):1043–64. doi: 10.1007/s00382-015-2631-0.
  • Maharana, P., A. P. Dimri, and A. Choudhary. 2020. Future changes in Indian summer monsoon characteristics under 1.5 and 2 °C specific warming levels. Climate Dynamics 54 (1–2):507–23. doi: 10.1007/s00382-019-05012-8.
  • Maharana, P., D. Kumar, P. Rai, P. R. Tiwari, and A. P. Dimri. 2022. Simulation of northeast monsoon in a coupled regional model framework. Atmospheric Research 266:105960. doi: 10.1016/j.atmosres.2021.105960.
  • Mann, H. B. 1945. Nonparametric tests against trend. Econometrica 13 (3):245–59. doi: 10.2307/1907187.
  • Mao, K., Z. Yuan, Z. Zuo, T. Xu, X. Shen, and C. Gao. 2019. Changes in global cloud cover based on remote sensing data from 2003 to 2012. Chinese Geographical Science 29 (2):306–15. doi: 10.1007/s11769-019-1030-6.
  • Markowski, P., and Y. Richardson. 2010. Mesoscale meteorology in midlatitudes. Oxford, UK: Wiley-Blackwell.
  • Mendoza, V., M. Pazos, R. Garduño, and B. Mendoza. 2021. Thermodynamics of climate change between cloud cover, atmospheric temperature and humidity. Scientific Reports 11 (1):21244. doi: 10.1038/s41598-021-00555-5.
  • Mieruch, S., S. Noël, H. Bovensmann, and J. P. Burrows. 2008. Analysis of global water vapour trends from satellite measurements in the visible spectral range. Atmospheric Chemistry and Physics 8 (3):491–504. doi: 10.5194/acp-8-491-2008.
  • Mishra, A. K. 2019. Investigating changes in cloud cover using the long-term record of precipitation extremes. Meteorological Applications 26 (1):108–16. doi: 10.1002/met.1745.
  • Mishra, A. K. 2020. Variability of integrated precipitable water over India in a warming climate. Meteorological Applications 27 (1):e1869. doi: 10.1002/met.1869.
  • Mitchell, J. F. B., and W. J. Ingram. 1992. Carbon dioxide and climate: Mechanisms of changes in cloud. Journal of Climate 5 (1):5–21. doi: 10.1175/1520-0442(1992)005 < 0005:CDACMO>2.0.CO;2.
  • Mukhopadhyay, P., A. K. Jaswal, and M. Deshpande. 2017. Variability and trends of atmospheric moisture over the Indian region. In Observed climate variability and change over the Indian region, ed. M. Rajeevan and S. Nayak, 129–44. Singapore: Springer.
  • Ningombam, S. S., S. Jade, and T. S. Shrungeshwara. 2018. Parameterization of water vapor using high-resolution GPS data and empirical models. Journal of Atmospheric and Solar-Terrestrial Physics 168:58–69. doi: 10.1016/j.jastp.2018.01.009.
  • Nützel, M., A. Podglajen, H. Garny, and F. Ploeger. 2019. Quantification of water vapour transport from the Asian monsoon to the stratosphere. Atmospheric Chemistry and Physics 19 (13):8947–66. doi: 10.5194/acp-19-8947-2019.
  • Parracho, A. C. B. 2017. Study of trends and variability of atmospheric water vapour with climate models and observations from global GNSS network. PhD dissertation, Université Pierre et Marie Curie-Paris VI. https://tel.archives-ouvertes.fr/tel-01881083.
  • Pattanaik, D. R. 2007. Variability of convective activity over the North Indian Ocean and its associations with monsoon rainfall over India. Pure and Applied Geophysics 164 (8–9):1527–45. doi: 10.1007/s00024-007-0243-2.
  • Pattnaik, D. R., and A. P. Dimri. 2020. Climate change over the Indian sub-continent. In Geodynamics of the Indian Plate: Evolutionary perspectives, ed. N. Gupta and S. K. Tandon, 537–63. Cham, Switzerland: Springer.
  • Peixoto, J. P., and A. H. Oort. 1992. Physics of climate. New York: American Institute of Physics.
  • Polanski, S., B. Fallah, D. J. Befort, S. Prasad, and U. Cubasch. 2014. Regional moisture change over India during the past millennium: A comparison of multi-proxy reconstructions and climate model simulations. Global and Planetary Change 122:176–85. doi: 10.1016/j.gloplacha.2014.08.016.
  • Prajeesh, A. G., K. Ashok, and D. B. Rao. 2013. Falling monsoon depression frequency: A Gray-Sikka conditions perspective. Scientific Reports 3 (1):2989. doi: 10.1038/srep02989.
  • Prakash, S., and H. Norouzi. 2020. Land surface temperature variability across India: A remote sensing satellite perspective. Theoretical and Applied Climatology 139 (1–2):773–84. doi: 10.1007/s00704-019-03010-8.
  • Prange, M., S. A. Buehler, and M. Brath. 2023. How adequately are elevated moist layers represented in reanalysis and satellite observations? Atmospheric Chemistry and Physics 23 (1):725–41. doi: 10.5194/acp-23-725-2023.
  • Prijith, S. S., C. B. Lima, M. V. Ramana, and M. S. Sai. 2021. Intra-seasonal contrasting trends in clouds due to warming induced circulation changes. Scientific Reports 11 (1):16985. doi: 10.1038/s41598-021-96246-2.
  • Raghavendra, P. K., K. R. Bhimala, G. K. Patra, S. Himesh, and S. Goroshi. 2023. Annual and seasonal trends in actual evapotranspiration over different meteorological sub-divisions in India using satellite-based data. Theoretical and Applied Climatology152 (3–4):999–1017. doi: 10.1007/s00704-023-04436-x.
  • Ramesh Kumar, M. R., and S. Sankar. 2010. Impact of global warming on cyclonic storms over north Indian Ocean. Indian Journal of Geo-Marine Sciences 39 (4):516–20.
  • Rani, S., and S. Mal. 2022. Trends in land surface temperature and its drivers over the High Mountain Asia. The Egyptian Journal of Remote Sensing and Space Science 25 (3):717–29. doi: 10.1016/j.ejrs.2022.04.005.
  • Riebeek, H. 2010. Global warming. NASA’s Earth Observatory. Accessed June 11, 2022. https://earthobservatory.nasa.gov/features/GlobalWarming/page1.php.
  • Roderick, T. P., C. Wasko, and A. Sharma. 2019. Atmospheric moisture measurements explain increases in tropical rainfall extremes. Geophysical Research Letters 46 (3):1375–82. doi: 10.1029/2018GL080833.
  • Rose, B. E., and M. C. Rencurrel. 2016. The vertical structure of tropospheric water vapor: Comparing radiative and ocean-driven climate changes. Journal of Climate 29 (11):4251–68. doi: 10.5194/acp-20-6129-2020.
  • Roy, S. S., and S. S. Roy. 2011. Regional variability of convection over northern India during the pre-monsoon season. Theoretical and Applied Climatology 103 (1–2):145–58. doi: 10.1007/s00704-010-0289-4.
  • Schickhoff, U., M. Bobrowski, S. Mal, N. Schwab, and R. B. Singh. 2022. The world’s mountains in the Anthropocene. In Mountain landscapes in transition: Effects of land use and climate change, ed. U. Schickhoff, R. B. Singh, and S. Mal, 1–144. Cham, Switzerland: Springer.
  • Schiro, K., A. J. D. Neelin, D. K. Adams, and B. R. Lintner. 2016. Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. Journal of the Atmospheric Sciences 73 (10):4043–63. doi: 10.1175/JAS-D-16-0119.1.
  • Schröder, M., M. Lockhoff, J. M. Forsythe, H. Q. Cronk, T. H. Vonder Haar, and R. Bennartz. 2016. The GEWEX water vapor assessment: Results from intercomparison, trend, and homogeneity analysis of total column water vapor. Journal of Applied Meteorology and Climatology 55 (7):1633–49. doi: 10.1175/JAMC-D-15-0304.1.
  • Sen, P. K. 1968. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association 63 (324):1379–89. doi: 10.1080/01621459.1968.10480934.
  • Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova. 2010. Tropospheric water vapor, convection, and climate. Reviews of Geophysics 48 (2):RG2001. doi: 10.1029/2009RG000301.
  • Shi, F., J. Xin, L. Yang, Z. Cong, R. Liu, Y. Ma, Y. Wang, X. Lu, and L. Zhao. 2018. The first validation of the precipitable water vapor of multisensor satellites over the typical regions in China. Remote Sensing of Environment 206:107–22. doi: 10.1016/j.rse.2017.12.022.
  • Sikka, D. R. 1977. Some aspects of the life history, structure and movement of monsoon depressions. Pure and Applied Geophysics PAGEOPH 115 (5–6):1501–29. doi: 10.1007/BF00874421.
  • Skliris, N., J. D. Zika, G. Nurser, S. A. Josey, and R. Marsh. 2016. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Scientific Reports 6 (1):38752. doi: 10.1038/srep38752.
  • Soden, B. J., and I. M. Held. 2006. An assessment of climate feedbacks in coupled ocean–atmosphere models. Journal of Climate 19 (14):3354–60. doi: 10.1175/JCLI3799.1.
  • Sreenath, A. V., S. Abhilash, P. Vijaykumar, and B. E. Mapes. 2022. West coast India’s rainfall is becoming more convective. NPJ Climate and Atmospheric Science 5 (1):1–7. doi: 10.1038/s41612-022-00258-2.
  • Sridhara, N. 2018. Do extreme precipitation intensities linked to temperature over India follow the Clausius-Clapeyron relationship? Current Science 115 (3):391–92.
  • Theil, H. 1950. A rank-invariant method of linear and polynomial regression analysis. Indagationes Mathematicae 12 (85):173.
  • Tian, R., Y. Ma, and W. Ma. 2021. Vertical motion of air over the Indian Ocean and the climate in East Asia. Water 13 (19):2641. doi: 10.3390/w13192641.
  • Trenberth, K. E., J. Fasullo, and L. Smith. 2005. Trends and variability in column-integrated atmospheric water vapor. Climate Dynamics 24 (7–8):741–58. doi: 10.1007/s00382-005-0017-4.
  • Vijayakumar, K., P. C. S. Devara, D. M. Giles, B. N. Holben, S. V. B. Rao, and C. K. Jayasankar. 2018. Validation of satellite and model aerosol optical depth and precipitable water vapour observations with AERONET data over Pune, India. International Journal of Remote Sensing 39 (21):7643–63. doi: 10.1080/01431161.2018.1476789.
  • Wagner, T., S. Beirle, M. Grzegorski, and U. Platt. 2006. Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature. Journal of Geophysical Research 111 (D12):523. doi: 10.1029/2005JD006523.
  • Wang, J., A. Dai, and C. Mears. 2016. Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements. Journal of Climate 29 (14):5205–22. doi: 10.1175/JCLI-D-15-0485.1.
  • Wang, R., and Y. Liu. 2020. Recent declines in global water vapor from MODIS products: Artifact or real trend? Remote Sensing of Environment 247:111896. doi: 10.1016/j.rse.2020.111896.
  • Wang, R., Y. Fu, T. Xian, F. Chen, R. Yuan, R. Li, and G. Liu. 2017. Evaluation of atmospheric precipitable water characteristics and trends in mainland China from 1995 to 2012. Journal of Climate 30 (21):8673–88. doi: 10.1175/JCLI-D-16-0433.1.
  • Wang, Y., K. Yang, Z. Pan, J. Qin, D. Chen, C. Lin, Y. Chen, W. Tang, M. Han, N. Lu, et al. 2017. Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the Southern Tibetan Plateau. Journal of Climate 30 (15):5699–5713. doi: 10.1175/JCLI-D-16-0630.1.
  • Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne. 2007. Attribution of observed surface humidity changes to human influence. Nature 449 (7163):710–12. doi: 10.1038/nature06207.
  • Williams, E., and N. Renno. 1993. An analysis of the conditional instability of the tropical atmosphere. Monthly Weather Review 121 (1):21–36. doi: 10.1175/1520-0493(1993)121 < 0021:AAOTCI>2.0.CO;2.
  • Xu, K., L. Zhong, Y. Ma, M. Zou, and Z. Huang. 2020. A study on the water vapor transport trend and water vapor source of the Tibetan Plateau. Theoretical and Applied Climatology 140 (3–4):1031–42. doi: 10.1007/s00704-020-03142-2.
  • Xu, X., C. Sun, D. Chen, T. Zhao, J. Xu, S. Zhang, J. Li, B. Chen, Y. Zhao, H. Xu, et al. 2022. A vertical transport window of water vapor in the troposphere over the Tibetan Plateau with implications for global climate change. Atmospheric Chemistry and Physics 22 (2):1149–57. doi: 10.5194/acp-22-1149-2022.
  • Xu, X., H. Tian, K. Qie, X. He, R. Zhang, and H. Tu. 2021. A study on the trend of the upper tropospheric water vapor over the Tibetan Plateau in summer. Asia-Pacific Journal of Atmospheric Sciences 57 (2):277–88. doi: 10.1007/s13143-020-00191-5.
  • Xu, X., T. Zhao, C. Lu, Y. Guo, B. Chen, R. Liu, Y. Li, and X. Shi. 2014. An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmospheric Chemistry and Physics 14 (20):11287–95. doi: 10.5194/acp-14-11287-2014.
  • Yadav, R., R. K. Giri, and V. Singh. 2021. Intercomparison review of IPWV retrieved from INSAT-3DR sounder, GNSS and CAMS reanalysis data. Atmospheric Measurement Techniques 14 (7):4857–77. doi: 10.5194/amt-14-4857-2021.
  • Yu, J., Q. Li, Y. Ding, J. Zhang, Q. Wu, and X. Shen. 2022. Long-term trend of water vapor over the Tibetan Plateau in boreal summer under global warming. Science China Earth Sciences 65 (4):662–74. doi: 10.1007/s11430-021-9874-0.
  • Yue, J., J. Russell, I. I. I. Q. Gan, T. Wang, P. Rong, R. Garcia, and M. Mlynczak. 2019. Increasing water vapor in the stratosphere and mesosphere after 2002. Geophysical Research Letters 46 (22):13452–60. doi: 10.1029/2019GL084973.
  • Zhang, J., T. Zhao, A. Dai, and W. Zhang. 2019. Detection and attribution of atmospheric precipitable water changes since the 1970s over China. Scientific Reports 9 (1):17609. doi: 10.1038/s41598-019-54185-z.
  • Zhang, K., J. S. Kimball, R. R. Nemani, S. W. Running, Y. Hong, J. J. Gourley, and Z. Yu. 2015. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports 5 (1):15956. doi: 10.1038/srep15956.
  • Zhang, L., L. Wu, and B. Gan. 2013. Modes and mechanisms of global water vapor variability over the twentieth century. Journal of Climate 26 (15):5578–93. doi: 10.1175/JCLI-D-12-00585.1.
  • Zhang, Y., J. Xu, N. Yang, and P. Lan. 2018. Variability and trends in global precipitable water vapor retrieved from COSMIC radio occultation and radiosonde observations. Atmosphere 9 (5):174. doi: 10.3390/atmos9050174.
  • Zhao, T., A. Dai, and J. Wang. 2012. Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. Journal of Climate 25 (13):4549–67. doi: 10.1175/JCLI-D-11-00557.1.
  • Zhao, Y., and T. Zhou. 2020. Asian water tower evinced in total column water vapor: A comparison among multiple satellite and reanalysis data sets. Climate Dynamics 54 (1–2):231–45. doi: 10.1007/s00382-019-04999-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.