173
Views
0
CrossRef citations to date
0
Altmetric
Articles

Modeling Spatial Anisotropic Relationships Using Gradient-Based Geographically Weighted Regression

ORCID Icon, ORCID Icon & ORCID Icon
Pages 697-718 | Received 24 Aug 2023, Accepted 25 Oct 2023, Published online: 04 Mar 2024

References

  • Comber, A., K. Chi, M. Q. Huy, Q. Nguyen, B. B. Lu, H. H. Phe, and P. Harris. 2020. Distance metric choice can both reduce and induce collinearity in geographically weighted regression. Environment and Planning B: Urban Analytics and City Science 47 (3):489–507. doi: 10.1177/2399808318784017.
  • Fotheringham, A. S., and C. Brunsdon. 1999. Local forms of spatial analysis. Geographical Analysis 31 (4):340–58. 1999.tb00989.x. doi: 10.1111/j.1538-4632.
  • Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2002. Geographically weighted regression: The analysis of spatially varying relationships. Chichester, UK: Wiley.
  • Fotheringham, A. S., Z. Q. Li, and L. J. Wolf. 2021. Scale, context, and heterogeneity: A spatial analytical perspective on the 2016 U.S. presidential election. Annals of the American Association of Geographers 116 (6):1–20. doi: 10.1080/24694452.2020.1835459.
  • Fotheringham, A. S., W. B. Yang, and W. Kang. 2017. Multiscale geographically weighted regression. Annals of the American Association of Geographers 107 (6):1247–65. doi: 10.1080/24694452.2017.1352480.
  • He, Q. Q., and B. Huang. 2018. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sensing of Environment 206:72–83. doi: 10.1016/j.rse.2017.12.018.
  • Huang, J. X., X. C. Mao, H. Deng, Z. K. Liu, J. Chen, and K. Y. Xiao. 2021. An improved GWR approach for exploring the anisotropic influence of ore-controlling factors on mineralization in 3D space. Natural Resources Research 31 (4):2181–96. doi: 10.1007/s11053-021-09954-x.
  • Jeff, B. B., and V. D. Clayton. 2011. Programs for Kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances. Computers &Geosciences 37:495–510.
  • Kuila, U., Dewhurst D. N., Siggins A. F., and Raven, M. D. 2011. Stress anisotropy and velocity anisotropy in low porosity shale. Tectonophsics 503 (1):34–44. doi: 10.1016/j.tecto.2010.09.023
  • Leong, Y. Y., and J. C. Yue. 2017. A modification to geographically weighted regression. International Journal of Health Geographics 16 (1):11. doi: 10.1186/s12942-017-0085-9.
  • Lu, B. B., M. Charlton, C. Brunsdon, and P. Harris. 2016. The Minkowski approach for choosing the distance metric in geographically weighted regression. International Journal of Geographical Information Science 30 (2):351–68. doi: 10.1080/13658816.2015.1087001.
  • Mainali, J., H. Chang, and R. Parajuli. 2022. Stream distance-based geographically weighted regression for exploring watershed characteristics and water quality relationships. Annals of the American Association of Geographers 113 (2):390–408. doi: 10.1080/24694452.2022.2107478.
  • Mei, C. L., M. Xu, and N. Wang. 2016. A bootstrap test for constant coefficients in geographically weighted regression models. International Journal of Geographical Information Science 30 (8):1622–43. doi: 10.1080/13658816.2016.1149181.
  • Murakami, D., and D. A. Griffith. 2019. Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spatial Statistics 30:39–64. doi: 10.1016/j.spasta.2019.02.003.
  • Páez, A. 2004. Anisotropic variance functions in geographically weighted regression models. Geographical Analysis 36 (4):299–314. doi: 10.1353/geo.2004.0017.
  • Propastin, P. 2012. Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation 18:82–90. doi: 10.1016/j.jag.2011.12.013.
  • Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46:234–40. doi: 10.2307/143141.
  • van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environmental Science & Technology 50 (7):3762–72. doi: 10.1021/acs.est.5b05833.
  • Wang, N., C. L. Mei, and X. D. Yan. 2008. Local linear estimation of spatially varying coefficient models: An improvement on the geographically weighted regression technique. Environment and Planning A: Economy and Space 40 (4):986–1005. doi: 10.1068/a3941.
  • Wang, Y. X., Q. B. Fan, and L. Zhu. 2018. Variable selection and estimation using a continuous approximation to the L-0 penalty. Annals of the Institute of Statistical Mathematics 70 (1):191–214. doi: 10.1007/s10463-016-0588-3.
  • Wu, B., J. B. Yan, and K. Cao. 2023. l0-norm variable adaptive selection for geographically weighted regression model. Annals of the American Association of Geographers 113 (5):1190–1206. doi: 10.1080/24694452.2022.2161988.
  • Wu, B., J. B. Yan, and H. Lin. 2022. A cost-effective algorithm for calibrating multiscale geographically weighted regression models. International Journal of Geographical Information Science 36 (5):898–917. doi: 10.1080/13658816.2021.1999457.
  • Wu, S. S., Z. H. Du, Y. Y. Wang, T. Lin, F. Zhang, and R. Y. Liu. 2020. Modeling spatially anisotropic nonstationarity processes in costal environments based on a directional geographically neural network weighted regression. The Science of the Total Environment 709:136097. doi: 10.1016/j.scitotenv.2019.136097.
  • Xuan, W. H., F. Zhang, H. Y. Zhou, Z. H. Du, and R. Y. Liu. 2021. Improving geographically weighted regression considering directional nonstationary for ground-level PM2.5 estimations. ISPRS International Journal of Geo-Information 10 (6):413. doi: 10.3390/ijgi10060413.
  • Yu, H. C., A. S. Fotheringham, Z. Q. Li, O. Taylor, W. Kang, and L. J. Wolf. 2020. Inference in multiscale geographically weighted regression. Geographical Analysis 52 (1):87–106. doi: 10.1111/gean.12189.
  • Zhu, J. X., C. H. Wen, J. Zhu, H. P. Zhang, and X. Q. Wang. 2020. A polynomial algorithm for best-subset selection problem. Proceedings of the National Academy of Sciences of the United States of America 117 (52):33117–23. doi: 10.1073/pnas.2014241117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.