115
Views
0
CrossRef citations to date
0
Altmetric
Articles

The Impact of Urban Scaling Structure on the Local-Scale Transmission of COVID-19: A Case Study of the Omicron Wave in Hong Kong Using Agent-Based Modeling

ORCID Icon & ORCID Icon
Pages 1079-1097 | Received 17 Sep 2023, Accepted 25 Jan 2024, Published online: 03 Apr 2024

References

  • Adam, D. C., P. Wu, J. Y. Wong, E. H. Y. Lau, T. K. Tsang, S. Cauchemez, G. M. Leung, and B. J. Cowling. 2020. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nature Medicine 26 (11):1714–19. doi: 10.1038/s41591-020-1092-0.
  • Aguilar, J., A. Bassolas, G. Ghoshal, S. Hazarie, A. Kirkley, M. Mazzoli, S. Meloni, S. Mimar, V. Nicosia, J. J. Ramasco, et al. 2022. Impact of urban structure on infectious disease spreading. Scientific Reports 12 (1):3816. doi: 10.1038/s41598-022-06720-8.
  • Ahmed, F., N. Ahmed, C. Pissarides, and J. Stiglitz. 2020. Why inequality could spread COVID-19. The Lancet Public Health 5 (5):e240. doi: 10.1016/S2468-2667(20)30085-2.
  • Alessandretti, L. 2022. What human mobility data tell us about COVID-19 spread. Nature Reviews Physics 4 (1):12–13. doi: 10.1038/s42254-021-00407-1.
  • Andrews, N., J. Stowe, F. Kirsebom, S. Toffa, T. Rickeard, E. Gallagher, C. Gower, M. Kall, N. Groves, A.-M. O’Connell, et al. 2022. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. The New England Journal of Medicine 386 (16):1532–46. doi: 10.1056/NEJMoa2119451.
  • Badr, H. S., H. Du, M. Marshall, E. Dong, M. M. Squire, and L. M. Gardner. 2020. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. The Lancet Infectious Diseases 20 (11):1247–54. doi: 10.1016/S1473-3099(20)30553-3.
  • Batty, M. 2008. The size, scale, and shape of cities. Science 319 (5864):769–71. doi: 10.1126/science.1151419.
  • Batty, M. 2013. The new science of cities. Cambridge, MA: MIT Press.
  • Bettencourt, L. M. A. 2013. The origins of scaling in cities. Science 340 (6139):1438–41. doi: 10.1126/science.1235823.
  • Bian, L., Y. Huang, L. Mao, E. Lim, G. Lee, Y. Yang, M. Cohen, and D. Wilson. 2012. Modeling individual vulnerability to communicable diseases: A framework and design. Annals of the Association of American Geographers 102 (5):1016–25. doi: 10.1080/00045608.2012.674844.
  • Blundell, R., M. Costa Dias, J. Cribb, R. Joyce, T. Waters, T. Wernham, and X. Xu. 2022. Inequality and the COVID-19 crisis in the United Kingdom. Annual Review of Economics 14 (1):607–36. doi: 10.1146/annurev-economics-051520-030252.
  • Brin, S., and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30 (1–7):107–17. doi: 10.1016/S0169-7552(98)00110-X.
  • Brockmann, D., L. Hufnagel, and T. Geisel. 2006. The scaling laws of human travel. Nature 439 (7075):462–65. doi: 10.1038/nature04292.
  • Cai, J., X. Deng, J. Yang, K. Sun, H. Liu, Z. Chen, C. Peng, X. Chen, Q. Wu, J. Zou, et al. 2022. Modeling transmission of SARS-CoV-2 Omicron in China. Nature Medicine 28 (7):1468–75. doi: 10.1038/s41591-022-01855-7.
  • Chang, S., E. Pierson, P. Wei Koh, J. Gerardin, B. Redbird, D. Grusky, and J. Leskovec. 2021. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589 (7840):82–87. doi: 10.1038/s41586-020-2923-3.
  • Cheng, V. C.-C., S.-C. Wong, V. W.-M. Chuang, S. Y.-C. So, J. H.-K. Chen, S. Sridhar, K. K.-W. To, J. F.-W. Chan, I. F.-N. Hung, P.-L. Ho, et al. 2020. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. The Journal of Infection 81 (1):107–14. doi: 10.1016/j.jinf.2020.04.024.
  • Chowkwanyun, M., and A. L. Reed. 2020. Racial health disparities and Covid-19—Caution and context. The New England Journal of Medicine 383 (3):201–03. doi: 10.1056/NEJMp2012910.
  • Clauset, A., C. R. Shalizi, and M. E. J. Newman. 2009. Power-law distributions in empirical data. SIAM Review 51 (4):661–703. doi: 10.1137/070710111.
  • Cot, C., G. Cacciapaglia, and F. Sannino. 2021. Mining Google and Apple mobility data: Temporal anatomy for COVID-19 social distancing. Scientific Reports 11 (1):4150. doi: 10.1038/s41598-021-83441-4.
  • Damme, W. V., R. Dahake, A. Delamou, B. Ingelbeen, E. Wouters, G. Vanham, R. van de Pas, J.-P. Dossou, P. Ir, S. Abimbola, et al. 2020. The COVID-19 pandemic: Diverse contexts; different epidemics—How and why? BMJ Global Health 5 (7):e003098. doi: 10.1136/bmjgh-2020-003098.
  • Data.gov.hk. 2023. Daily count of vaccination by age groups. Accessed July 10, 2023. https://data.gov.hk/en-data/dataset/hk-hhb-hhbcovid19-vaccination-rates-over-time-by-age.
  • Franch-Pardo, I., B. M. Napoletano, F. Rosete-Verges, and L. Billa. 2020. Spatial analysis and GIS in the study of COVID-19: A review. The Science of the Total Environment 739 (October):140033. doi: 10.1016/j.scitotenv.2020.140033.
  • Giles, J., and A. Wesolowski. 2023. Mobility: An R package for modeling human mobility patterns. Accessed September 13, 2023. https://covid-19-mobility-data-network.github.io/mobility/index.html.
  • Google LLC. 2023. Google COVID-19 community mobility reports. Accessed March 11, 2023. https://www.google.com/covid19/mobility/data_documentation.html?hl=en.
  • HKUMed. 2022. HKUMed proposes forward planning after Hong Kong’s fifth wave of Omicron BA.2. https://sph.hku.hk/en/News-And-Events/Press-Releases/2022/HKUMed-proposes-forward-planning-after-Hong-Kong.
  • Hong, B., B. J. Bonczak, A. Gupta, L. E. Thorpe, and C. E. Kontokosta. 2021. Exposure density and neighborhood disparities in COVID-19 infection risk. Proceedings of the National Academy of Sciences 118 (13):e2021258118. doi: 10.1073/pnas.2021258118.
  • Hong Kong Government. 2023a. Archives of list of buildings with confirmed/probable cases of COVID-19. Accessed March 11, 2023. https://www.chp.gov.hk/en/features/102991.html.
  • Hong Kong Government. 2023b. Declaration system for individuals tested positive for COVID-19 using rapid antigen test launched. Accessed March 11, 2023. https://www.info.gov.hk/gia/general/202203/07/P2022030700768.htm.
  • Hong Kong Government. 2023c. Hospital authority data sharing portal. Accessed March 11, 2023. https://www3.ha.org.hk/Data/HAStatistics/MajorReport.
  • Huang, J., and M.-P. Kwan. 2021. Uncertainties in the assessment of COVID-19 risk: A study of people’s exposure to high-risk environments using individual-level activity data. Annals of the American Association of Geographers 112 (4):968–87. doi: 10.1080/24694452.2021.1943301.
  • Iuliano, A. D., J. M. Brunkard, T. K. Boehmer, E. Peterson, S. Adjei, A. M. Binder, S. Cobb, P. Graff, P. Hidalgo, M. J. Panaggio, et al. 2022. Trends in disease severity and health care utilization during the early omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020–January 2022. MMWR: Morbidity and Mortality Weekly Report 71 (4):146–52. doi: 10.15585/mmwr.mm7104e4.
  • Jiang, B. 2009. Street hierarchies: A minority of streets account for a majority of traffic flow. International Journal of Geographical Information Science 23 (8):1033–48. doi: 10.1080/13658810802004648.
  • Jiang, B. 2013. Head/tail breaks: A new classification scheme for data with a heavy-tailed distribution. The Professional Geographer 65 (3):482–94. doi: 10.1080/00330124.2012.700499.
  • Jiang, B. 2018. A topological representation for taking cities as a coherent whole. Geographical Analysis 50 (3):298–313. doi: 10.1111/gean.12145.
  • Jiang, B., and T. Jia. 2010. Agent-based simulation of human movement shaped by the underlying street structure. arXiv:0910.3055 [Physics], April. http://arxiv.org/abs/0910.3055.
  • Jiang, B., and X. Liu. 2012. Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information. International Journal of Geographical Information Science 26 (2):215–29. doi: 10.1080/13658816.2011.575074.
  • Jiang, B., J. Yin, and S. Zhao. 2009. Characterizing the human mobility pattern in a large street network. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80 (2, Pt. 1):021136. doi: 10.1103/PhysRevE.80.021136.
  • Kan, Z., M.-P. Kwan, J. Huang, J. Cai, and D. Liu. 2023. A spatial network-based assessment of individual exposure to COVID-19. Annals of the American Association of Geographers. Advance online publication. doi: 10.1080/24694452.2023.2266021.
  • Keni, R., A. Alexander, P. Ganesh Nayak, J. Mudgal, and K. Nandakumar. 2020. COVID-19: Emergence, spread, possible treatments, and global burden. Frontiers in Public Health 8:216. doi: 10.3389/fpubh.2020.00216.
  • Kirsebom, F. C. M., N. Andrews, J. Stowe, S. Toffa, R. Sachdeva, E. Gallagher, N. Groves, A.-M. O’Connell, M. Chand, M. Ramsay, et al. 2022. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. The Lancet Infectious Diseases 22 (7):931–33. doi: 10.1016/S1473-3099(22)00309-7.
  • Kogan, N. E., L. Clemente, P. Liautaud, J. Kaashoek, N. B. Link, A. T. Nguyen, F. S. Lu, P. Huybers, B. Resch, C. Havas, et al. 2021. An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time. Science Advances 7 (10):eabd6989. doi: 10.1126/sciadv.abd6989.
  • Koks, S., R. W. Williams, J. Quinn, F. Farzaneh, N. Conran, S.-J. Tsai, G. Awandare, and S. R. Goodman. 2020. COVID-19: Time for precision epidemiology. Experimental Biology and Medicine 245 (8):677–79. doi: 10.1177/1535370220919349.
  • Kucharski, A. J., K. O. Kwok, V. W. I. Wei, B. J. Cowling, J. M. Read, J. Lessler, D. A. Cummings, and S. Riley. 2014. The contribution of social behaviour to the transmission of influenza A in a human population. PLoS Pathogens 10 (6):e1004206. doi: 10.1371/journal.ppat.1004206.
  • Lau, M. S. Y., B. Grenfell, M. Thomas, M. Bryan, K. Nelson, and B. Lopman. 2020. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA. Proceedings of the National Academy of Sciences of the United States of America 117 (36):22430–35. doi: 10.1073/pnas.2011802117.
  • Levin, A. T., N. Owusu-Boaitey, S. Pugh, B. K. Fosdick, A. B. Zwi, A. Malani, S. Soman, L. Besançon, I. Kashnitsky, S. Ganesh, et al. 2022. Assessing the burden of COVID-19 in developing countries: Systematic review, meta-analysis and public policy implications. BMJ Global Health 7 (5):e008477. doi: 10.1136/bmjgh-2022-008477.
  • Levin, R., D. L. Chao, E. A. Wenger, and J. L. Proctor. 2021. Insights into population behavior during the COVID-19 pandemic from cell phone mobility data and manifold learning. Nature Computational Science 1 (9):588–97. doi: 10.1038/s43588-021-00125-9.
  • Lewis, D. 2021. Superspreading drives the COVID pandemic—And could help to tame it. Nature 590 (7847):544–46. doi: 10.1038/d41586-021-00460-x.
  • Lima, L. L., and A. P. F. Atman. 2021. Impact of mobility restriction in COVID-19 superspreading events using agent-based model. PLoS ONE 16 (3):e0248708. doi: 10.1371/journal.pone.0248708.
  • Ma, A., and J. Parry. 2022. When Hong Kong’s “dynamic zero” Covid-19 strategy met omicron, low vaccination rates sent deaths soaring. BMJ (Clinical Research ed.) 377 (April):o980. doi: 10.1136/bmj.o980.
  • Ma, D., T. Osaragi, T. Oki, and B. Jiang. 2020. Exploring the heterogeneity of human urban movements using geo-tagged tweets. International Journal of Geographical Information Science 34 (12):2475–96. doi: 10.1080/13658816.2020.1718153.
  • Majra, D., J. Benson, J. Pitts, and J. Stebbing. 2021. SARS-CoV-2 (COVID-19) superspreader events. The Journal of Infection 82 (1):36–40. doi: 10.1016/j.jinf.2020.11.021.
  • Manica, M., A. De Bellis, G. Guzzetta, P. Mancuso, M. Vicentini, F. Venturelli, A. Zerbini, E. Bisaccia, M. Litvinova, F. Menegale, et al. 2022. Intrinsic generation time of the SARS-CoV-2 omicron variant: An observational study of household transmission. The Lancet Regional Health—Europe 19 (August):100446. doi: 10.1016/j.lanepe.2022.100446.
  • Nouvellet, P., S. Bhatia, A. Cori, K. E. C. Ainslie, M. Baguelin, S. Bhatt, A. Boonyasiri, N. F. Brazeau, L. Cattarino, L. V. Cooper, et al. 2021. Reduction in mobility and COVID-19 transmission. Nature Communications 12 (1):1090. doi: 10.1038/s41467-021-21358-2.
  • Paul, E., G. W. Brown, and V. Ridde. 2020. COVID-19: Time for paradigm shift in the nexus between local, national and global health. BMJ Global Health 5 (4):e002622. doi: 10.1136/bmjgh-2020-002622.
  • Rasmussen, S. A., M. J. Khoury, and C. del Rio. 2020. Precision public health as a key tool in the COVID-19 response. JAMA 324 (10):933–34. doi: 10.1001/jama.2020.14992.
  • Schläpfer, M., L. M. A. Bettencourt, S. Grauwin, M. Raschke, R. Claxton, Z. Smoreda, G. B. West, and C. Ratti. 2014. The scaling of human interactions with city size. Journal of the Royal Society, Interface 11 (98):20130789. doi: 10.1098/rsif.2013.0789.
  • Schläpfer, M., L. Dong, K. O’Keeffe, P. Santi, M. Szell, H. Salat, S. Anklesaria, M. Vazifeh, C. Ratti, and G. B. West. 2021. The universal visitation law of human mobility. Nature 593 (7860):522–27. doi: 10.1038/s41586-021-03480-9.
  • Sidik, S. 2023. What makes a COVID superspreader? Scientists learn more after deliberately infecting volunteers. Nature 618 (7967):892–93. doi: 10.1038/d41586-023-01961-7.
  • Templ, M., B. Meindl, A. Kowarik, and O. Dupriez. 2017. Simulation of synthetic complex data: The R package simPop. Journal of Statistical Software 79 (10):1–38. doi: 10.18637/jss.v079.i10.
  • Tizzoni, M., K. Sun, D. Benusiglio, M. Karsai, and N. Perra. 2015. The scaling of human contacts and epidemic processes in metapopulation networks. Scientific Reports 5 (1):15111. doi: 10.1038/srep15111.
  • Wong, D. W. S. 1992. The reliability of using the iterative proportional fitting procedure. The Professional Geographer 44 (3):340–48. doi: 10.1111/j.0033-0124.1992.00340.x.
  • Wong, D. W. S., and Y. Li. 2020. Spreading of COVID-19: Density matters. PLoS ONE 15 (12):e0242398. doi: 10.1371/journal.pone.0242398.
  • Xi, J., X. Liu, J. Wang, L. Yao, and C. Zhou. 2023. A systematic review of COVID-19 geographical research: Machine learning and bibliometric approach. Annals of the American Association of Geographers 113 (3):581–98. doi: 10.1080/24694452.2022.2130143.
  • Xing, W., and A. Ghorbani. 2004. Weighted PageRank algorithm. In Proceedings of the Second Annual Conference on Communication Networks and Services Research, ed. A. A. Ghorbani, 305–14. Fredericton, NB, Canada: IEEE. doi: 10.1109/DNSR.2004.1344743.
  • Xu, C., L. Jin, and L. Lee. 2023. An empirical spatial network model based on human mobility for epidemiological research: A case study. Annals of the American Association of Geographers 113 (6):1461–82. doi: 10.1080/24694452.2023.2187339.
  • Yancy, C. W. 2020. COVID-19 and African Americans. JAMA 323 (19):1891–92. doi: 10.1001/jama.2020.6548.
  • Yang, H., X. A. Yao, R. Liu, and C. C. Whalen. 2023. Developing a place–time-specific transmissibility index to measure and examine the spatiotemporally varying transmissibility of COVID-19. Annals of the American Association of Geographers 113 (6):1419–43. doi: 10.1080/24694452.2023.2182758.
  • Yilmazkuday, H. 2021. Stay-at-home works to fight against COVID-19: International evidence from Google mobility data. Journal of Human Behavior in the Social Environment 31 (1–4):210–20. doi: 10.1080/10911359.2020.1845903.
  • Zhang, N., W. Jia, P. Wang, C.-H. Dung, P. Zhao, K. Leung, B. Su, R. Cheng, and Y. Li. 2021. Changes in local travel behaviour before and during the COVID-19 pandemic in Hong Kong. Cities 112 (May):103139. doi: 10.1016/j.cities.2021.103139.
  • Zhang, W., and K. Ning. 2023. Spatiotemporal heterogeneities in the causal effects of mobility intervention policies during the COVID-19 outbreak: A spatially interrupted time-series (SITS) analysis. Annals of the American Association of Geographers 113 (5):1112–34. doi: 10.1080/24694452.2022.2161986.
  • Zhou, J., A. Singanayagam, N. Goonawardane, M. Moshe, F. P. Sweeney, K. Sukhova, B. Killingley, M. Kalinova, A. J. Mann, A. P. Catchpole, et al. 2023. Viral emissions into the air and environment after SARS-CoV-2 human challenge: A Phase 1, open label, first-in-human study. The Lancet Microbe 4 (8):e579–e590. doi: 10.1016/S2666-5247(23)00101-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.