835
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Patient-specific modeling of the trochlear morphologic anomalies by means of hyperbolic paraboloids

, , &
Pages 29-38 | Received 27 Nov 2015, Accepted 11 Apr 2016, Published online: 27 Apr 2016

References

  • Carrillon Y, Abidi H, Dejour D, et al. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216:582–585.
  • Escala JS, Mellado JM, Olona JM, et al. Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg Sports Traum Arthr. 2006;14:264–272.
  • Merchant A. Classification of patellofemoral disorders. Arthroscopy. 1988;4:235–240.
  • Myronenko A, Song X. Point-set registration: coherent point drift. IEEE Trans Patt Anal Mach Intell. 2010;32:2262–2275.
  • Teichtahl AJ, Parkins K, Hanna F, et al. The relationship between the angle of the trochlear groove and patella cartilage and bone morphology – a cross-sectional study of healthy adults. Osteoarthr Cartil. 2007;15:1158–1162.
  • Beitzel K, Schöttle PB, Cotic M, et al. Prospective clinical and radiological two-year results after patellofemoral arthroplasty using an implant with an asymmetric trochlea design. Knee Surg Sports Traum Arthr. 2013;21:332–339.
  • Dai M, Newman TS, Cao C. Least-squares-based fitting of paraboloids. Patt Recog. 2007;40:504–515.
  • Fawcett T. An introduction to ROC analysis. Patt Rec Let. 2006;27:861–874.
  • Mofidi A, Veravalli K, Jinnah RH, et al. Association and impact of patellofemoral dysplasia on patellofemoral arthropathy and arthroplasty. Knee. 2014;21:509–513.
  • Saffarini M, Ntagiopoulos PG, Demey G, et al. Evidence of trochlear dysplasia in patellofemoral arthroplasty designs. Knee Surg Sports Traum Arthr. 2014;22:2574–2581.
  • Biedert R, Sigg A, Gal I, et al. 3D representation of the surface topography of normal and dysplastic trochlea using MRI. Knee. 2011;18:340–346.
  • Iranpour F, Merican A, Dandachli W, et al. The geometry of the trochlear groove. Clin Orthop Relat Res. 2010;468:782–788.
  • Shih YF, Bull AM, Amis AA. The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traum Arthr. 2004;12:300–306.
  • Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev. 2007;15:39–46.
  • Lippacher S, Dejour D, Elsharkawi M, et al. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med. 2012;40:837–843.
  • Nelitz M, Lippacher S, Reichel H, et al. Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traum Arthr. 2014;22:120–127.
  • Pfirrmann CWA, Zanetti M, Romero J, et al. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216:858–864.
  • LaPrade RF, Cram TR, James EW, et al. Trochlear dysplasia and the role of trochleoplasty. Clin Sports Med. 2014;33:531–545.
  • MacKay JW, Godley KC, Toms AP, et al. Trochlear boss height measurement: a comparison of radiographs and MRI. Knee. 2014;21:1052–1057.
  • Monk AP, Choji K, O’Connor JJ, et al. The shape of the distal femur: a geometrical study using MRI. Bone Joint J. 2014;96-B:1623–1630.
  • Salzmann GM, Weber TS, Spang JY, et al. Comparison of native axial radiographs with axial MR imaging for determination of the trochlear morphology in patients with trochlear dysplasia. Arch Orthop Trauma Surg. 2010;130:335–340.
  • Dornacher D, Reichel H, Lippacher S. Measurement of tibial tuberosity-trochlear groove distance: evaluation of inter- and intraobserver correlation dependent on the severity of trochlear dysplasia. Knee Surg Sports Traum Arthr. 2014;22:2382–2387.
  • Biedert R, Bachmann M. Anterior–posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surg Sports Traum Arthr. 2009;17:1225–1230.
  • Wright SJ, Boymans TA, Grimm B, et al. Strong correlation between the morphology of the proximal femur and the geometry of the distal femoral trochlea. Knee Surg Sports Traum Arthr. 2014;22:2900–2910.
  • Cerveri P, Marchente M, Bartels W, et al. Automated method for computing the morphological and clinical parameters of the proximal femur using heuristic modeling techniques. Ann Biomed Eng. 2010;38:1752–1766.
  • Cerveri P, Marchente M, Manzotti A, et al. Determination of the Whiteside line on the femur surface model by fitting high-order polynomial functions to the cross-section profiles of the intercondylar fossa. Comput Aid Surg. 2011;16:71–85.
  • Cerveri P, Manzotti A, Marchente M, et al. Mean-shifted surface curvature algorithm for automatic bone shape segmentation in orthopedic surgery planning: a sensitivity analysis. Comput Aid Surg. 2012;17:128–134.
  • Cerveri P, Manzotti A, Confalonieri N, et al. Automating the design of resection guides specific to patient anatomy in knee replacement surgery by enhanced 3D curvature and surface modeling of distal femur shape models. Comput Med Imaging Graph. 2014;38:664–674.
  • Fitzpatrick CK, Baldwin MA, Laz PJ, et al. Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function. J Biomech. 2001;44:2446–2452.
  • van Haver A, De Roo K, De Beule M, et al. A statistical shape model of trochlear dysplasia of the knee. Knee. 2014;21:518–523.
  • Davidson PA, Rivenburgh D. Focal anatomic patellofemoral inlay resurfacing: theoretic basis, surgical technique, and case reports. Orthop Clin North Am. 2008;39:337–346.