2,289
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Tracking multiple surgical instruments in a near-infrared optical system

, , &

References

  • Wu YY, Plakseychuk A, Shimada K. Computer-aided surgical planner for a new bone deformity correction device using axis-angle representation. Med Eng Phys. 2014;36:1536–1542.
  • Sun S-P, Hsu H-C, Chou Y-J. Simulation of internal fixation surgery for calcaneal collapse with 3D full-sized computer-aided technology. Comput Aided Des Appl. 2012;9:599–607.
  • Peterhans M, Oliveira T, Banz V, et al. Computer-assisted liver surgery: clinical applications and technological trends. Crit Rev Biomed Eng. 2012;40:199–220.
  • Schiavone P, Boudou T, Ohayon J, et al. In vivo measurement of the human soft tissues constitutive laws. Applications to computer aided surgery. Comput Methods Biomech Biomed Eng. 2012;10:185–186.
  • Georgii J, Eder M, Burger K, et al. A computational tool for preoperative breast augmentation planning in aesthetic plastic surgery. IEEE J Biomed Health Inform. 2014;18:907–919.
  • Qian Y, Hui R, Gao X. 3D CBIR with sparse coding for image-guided neurosurgery. Signal Process. 2013;93:1673–1683.
  • Meyer T, Kuc J, Uhlemann F, et al. Autostereoscopic 3D visualization and image processing system for neurosurgery. Biomed Tech. 2013;58:281–291.
  • Oliveira-Santos T, Baumberger C, Constantinescu M, et al. 3D face reconstruction from 2D pictures: first results of a web-based computer aided system for aesthetic procedures. Ann Biomed Eng. 2013;41:952–966.
  • Sun S-P, Hsu K-W, Chen J-S. Postoperative evaluation platform of female breast implant surgery with breast configuration indicator. Comput Biol Med. 2009;39:595–603.
  • Ciocca L, Fantini M, de Crescenzio F, et al. CAD-CAM prosthetically guided bone regeneration using preformed titanium mesh for the reconstruction of atrophic maxillary arches. Comput Methods Biomech Biomed Eng. 2013;16:26–32.
  • Subburaj K, Ravi B, Agarwal M. Computer-aided methods for assessing lower limb deformities in orthopaedic surgery planning. Comput Med Imaging Graph. 2010;34:277–288.
  • Guignard J, Arnold A, Weisstanner C, et al. A bone-thickness map as a guide for bone-anchored port implantation surgery in the temporal bone. Materials. 2013;6:5291–5301.
  • Fang T-Y, Wang P-C, Liu C-H, et al. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training. Comput Methods Prog Bio. 2014;113:674–681.
  • Cai K, Yang R, Ning H, et al. An automatic algorithm for distinguishing optical navigation markers used during surgery. Dyna. 2015;90:203–209.
  • Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Trans Robot Automat. 2003;19:765–781.
  • Tully S, Choset H. A filtering approach for image-guided surgery with a highly articulated surgical Snake Robot. IEEE Trans Biomed Eng. 2016;63:392–402.
  • Wen R, Tay W-L, Nguyen BP, et al. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Meth Prog Biomed. 2014;116:68–80.
  • Cai K, Yang R, Lin Q, et al. Near-infrared camera calibration for optical surgical navigation. J Med Syst. 2016;40:1–12.
  • Lin Q, Yang R, Cai K, et al. Real-time automatic registration in optical surgical navigation. Infrared Phys Techn. 2016;76:375–385.
  • Cai K, Yang R, Chen H, et al. Synchronization design and error analysis of near-infrared cameras in surgical navigation. J Med Syst. 2016;40:1–8.
  • Zhang K, Sheng Y, Lv H. Stereo matching cost computation based on nonsubsampled contourlet transform. J Vis Commun Image Represent. 2015;26:275–283.
  • Benedetti L, Corsini M, Cignoni P, et al. Color to gray conversions in the context of stereo matching algorithms: an analysis and comparison of current methods and an ad-hoc theoretically-motivated technique for image matching. Mach Vis Appl. 2012;23:327–348.
  • Park M-G, Park J, Shin Y, et al. Stereo vision with image-guided structuredlight pattern matching. Electron Lett. 2015;51:238–239.
  • Kang S, Hong H. Near-real-time stereo matching method using temporal and spatial propagation of reliable disparity. Opt Eng. 2014;53:063107.
  • Kogler J, Eibensteiner F, Humenberger M, et al. Enhancement of sparse silicon retina-based stereo matching using belief propagation and two-stage postfiltering. J Electron Imag. 2014;23:043011.
  • Wei Z, Ren L, Song S. Research on the 3-D reconstruction of industrial flame based on the ratio of controlled matching points. IJMUE. 2015;10:23–34.
  • Liu J, Li C, Mei F, et al. 3D entity-based stereo matching with ground control points and joint second-order smoothness prior. Visual Comput. 2015;31:1253–1269.
  • Zhou Z, Wu D, Zhu Z. Stereo matching using dynamic programming based on differential smoothing. Optik. 2016;127:2287–2293.
  • Raghavendra U, Makkithaya K, Karunakar AK. Anchor-diagonal-based shape adaptive local support region for efficient stereo matching. Signal Image Video Process. 2015;9:893–901.
  • Han W, Zheng J-B, Li X-X. A fast and accurate stereo matching algorithm based on epipolar line restriction. 2008 CISP'08 Congress on Image and Signal Processing, Sanya, China: IEEE; 2008:271–275.
  • Donate A, Liu X, Collins EG. Efficient path-based stereo matching with subpixel accuracy. Syst Man Cybernet Part B Cybernet IEEE Trans. 2011;41:183–195.
  • Wiles AD, Thompson DG, Frantz DD. Accuracy assessment and interpretation for optical tracking systems. Medical Imaging 2004, San Diego, CA: International Society for Optics and Photonics; 2004:421–432.