3,739
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom

, , , , , , , & show all

References

  • Perneczky A, Reisch R, Tschabitscher M. Keyhole approaches in neurosurgery. Wien, New York: Springer; 2008.
  • Rhoton AL, Rhoton AL. Congress of Neurological Surgeons. Rhoton cranial anatomy and surgical approaches. Philadelphia (PA): Lippincott Williams & Wilkins; 2003.
  • Reisch R, Stadie A, Kockro RA, et al. The keyhole concept in neurosurgery. World Neurosurg. 2013;79:S17 e9–S13.
  • Kockro RA, Stadie A, Schwandt E, et al. A collaborative virtual reality environment for neurosurgical planning and training. Neurosurgery. 2007;61:379–391.
  • Kersten-Oertel M, Jannin P, Collins DL. The state of the art of visualization in mixed reality image guided surgery. Comput Med Imag Graphics. 2013;37:98–112.
  • Meola A, Cutolo F, Carbone M, et al. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev. 2016;1–12.
  • Kawamata T, Iseki H, Shibasaki T, et al. Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery. 2002;50:1393–1397.
  • King AP, Edwards PJ, Maurer CR, Jr., et al. A system for microscope-assisted guided interventions. Stereotact Funct Neurosurg. 1999;72:107–111.
  • Edwards PJ, Johnson LG, Hawkes DJ, et al. Clinical experience and perception in stereo augmented reality surgical navigation. In: Jiang ZG, Jiang T, editors. MIAR. Berlin (Germany): Springer-Verlag; 2004. p. 369–376.
  • Lovo EE, Quintana JC, Puebla MC, et al. A novel, inexpensive method of image coregistration for applications in image-guided surgery using augmented reality. Neurosurgery. 2007;60:366–371.
  • Kockro RA, Tsai YT, Ng I, et al. Dex-ray: augmented reality neurosurgical navigation with a handheld video probe. Neurosurgery. 2009;65:795–807.
  • Inoue D, Cho B, Mori M, et al. Preliminary study on the clinical application of augmented reality neuronavigation. J Neurol Surg A Cent Eur Neurosurg. 2013;74:71–76.
  • Masutani Y, Dohi T, Yamane F, et al. Augmented reality visualization system for intravascular neurosurgery. Comput Aided Surg. 1998;3:239–247.
  • Cabrilo I, Bijlenga P, Schaller K. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations. Acta Neurochir. 2014;156:1769–1774.
  • Cabrilo I, Schaller K, Bijlenga P. Augmented reality-assisted bypass surgery: embracing minimal invasiveness. World Neurosurg. 2015;83:596–602.
  • Cabrilo I, Bijlenga P, Schaller K. Augmented reality in the surgery of cerebral aneurysms: a technical report. Neurosurgery. 2014;10(Suppl 2):252–260.
  • Iseki H, Masutani Y, Iwahara M, et al. Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery. Stereotact Funct Neurosurg. 1997;68:18–24.
  • Deng W, Li F, Wang M, et al. Easy-to-use augmented reality neuronavigation using a wireless tablet PC. Stereotact Funct Neurosurg. 2014;92:17–24.
  • Low D, Lee CK, Dip LL, et al. Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas. Br J Neurosurg. 2010;24:69–74.
  • Doyle WK. Low end interactive image-directed neurosurgery - Update on rudimentary augmented reality used in epilepsy surgery. St Heal T. 1996;29:1–11.
  • Stadie AT, Reisch R, Kockro RA, et al. Minimally invasive cerebral cavernoma surgery using keyhole approaches - solutions for technique-related limitations. Minim Invasive Neurosurg. 2009;52:9–16.
  • Kersten-Oertel M, Chen SJS, Collins DL. An evaluation of depth enhancing perceptual cues for vascular volume visualization in neurosurgery. IEEE Trans Visual Comput Graphics. 2014;20:391–403.
  • Kersten-Oertel M, Jannin P, Collins DL. DVV: a taxonomy for mixed reality visualization in image guided surgery. IEEE Trans Vis Comput Graph. 2012;18:332–352.
  • Mahvash M, Besharati Tabrizi L. A novel augmented reality system of image projection for image-guided neurosurgery. Acta Neurochir. 2013;155:943–947.
  • Ferrari V, Cutolo F. Letter to the Editor: augmented reality-guided neurosurgery. J Neurosurg. 2016;125:235–237.
  • Parrini S, Cutolo F, Freschi C, et al. Augmented reality system for freehand guide of magnetic endovascular devices. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:490–493.
  • Badiali G, Ferrari V, Cutolo F, et al. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. J Cranio-Maxillofac Surg. 2014;42:1970–1976.
  • Cutolo F, Badiali G, Ferrari V. Human-PnP: ergonomic AR interaction paradigm for manual placement of rigid bodies. augmented environments for computer-assisted interventions. AE-CAI. 2015;9365:50–60.
  • Cutolo F, Carbone M, Parchi PD, Ferrari V, Lisanti M, Ferrari M. Application of a new wearable augmented reality video see-through display to aid percutaneous procedures in spine surgery. In: De Paolis TL, Mongelli A, editors. Augmented reality, virtual reality, and computer graphics: third international conference. Lecce, Italy: AVR, 2016, June 15-18, Proceedings, Part II. Cham: Springer International Publishing; 2016. p. 43–54.
  • Cutolo F, Carli S, Parchi PD, Canalini L, Ferrari M, Lisanti M, Ferrari V. AR interaction paradigm for closed reduction of long-bone fractures via external fixation. Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology; 2016; 2996317.
  • Cutolo F, Parchi PD, Ferrari V. Video see through ar head-mounted display for medical procedures. Paper presented at IEEE International Symposium on ISMAR, Munich, Germany; 2014. p. 393–396.
  • Ferrari V, Cutolo F, Calabro EM, et al. HMD video see though ar with unfixed cameras vergence. Paper presented at IEEE International Symposium on ISMAR, Munich, Germany; 2014. p. 265–266.
  • Ferrari V, Megali G, Troia E, et al. A 3-D mixed-reality system for stereoscopic visualization of medical dataset. IEEE Trans Biomed Eng. 2009;56:2627–2633.
  • Cutolo F, Freschi C, Mascioli S, et al. Robust and accurate algorithm for wearable stereoscopic augmented reality with three indistinguishable markers. Electronics. 2016;5:59.
  • Kanbara M, Okuma T, Takemura H, Yokoya N. A stereoscopic video see-through augmented reality system based on real-time vision-based registration. Proceedings of the IEEE Virtual Reality, New Brunswick, NJ; 2000.
  • State A, Keller KP, Fuchs H. Simulation-based design and rapid prototyping of a parallax-free, orthoscopic video see-through head-mounted display. Proceedings of the International Symposium on Mixed and Augmented Reality. 2005. p. 28–31.
  • Cutolo F, Siesto M, Mascioli S, Freschi C, Ferrari M, Ferrari V. Configurable software framework for 2D/3D video see-through displays in medical applications. In: De Paolis TL, Mongelli A, editors. Augmented reality, virtual reality, and computer graphics: Third International Conference, AVR 2016, Lecce, Italy, June 15-18, 2016 Proceedings, Part II. Cham: Springer International Publishing; 2016. p. 30–42.
  • Zhang ZY. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Machine Intell. 2000;22:1330–1334.
  • Navab N, Heining SM, Traub J. Camera Augmented Mobile C-Arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging. 2010;29:1412–1423.
  • Ferrari V, Carbone M, Cappelli C, et al. Value of multidetector computed tomography image segmentation for preoperative planning in general surgery. Surg Endosc. 2012;26:616–626.
  • Kersten-Oertel M, Jannin P, Collins DL. DVV: towards a taxonomy for mixed reality visualization in image guided surgery. Med Imag Augment Reality. 2010;6326:334–343.
  • Abhari K, Baxter JSH, Chen ECS, et al. Training for planning tumour resection: augmented reality and human factors. IEEE Trans Biomed Eng. 2015;62:1466–1477.
  • Condino S, Carbone M, Ferrari V, et al. How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators. Int J Med Robotics Comput Assist Surg. 2011;7:202–213.
  • Chen SJ, Hellier P, Marchal M, et al. An anthropomorphic polyvinyl alcohol brain phantom based on Colin27 for use in multimodal imaging. Med Phys. 2012;39:554–561.
  • Chiarelli P, Lanata A, Carbone M. Acoustic waves in hydrogels: a bi-phasic model for ultrasound tissue-mimicking phantom. Mater Sci Eng C-Biomimetic Supramol Syst. 2009;29:899–907.
  • Jamieson S. Likert scales: how to (ab)use them. Med Educ. 2004;38:1217–1218.
  • Drouin S, Kersten-Oertel M, Collins DL. Interaction-based registration correction for improved augmented reality overlay in neurosurgery. Lect Notes Comput Sci. 2015;9365:21–29.
  • Kantelhardt SR, Gutenberg A, Neulen A, Keric N, Renovanz M, Giese A. Video-assisted navigation for adjustment of image-guidance accuracy to slight brain shift. Oper Neurosurg. 2015;11:504-511.