2,623
Views
1
CrossRef citations to date
0
Altmetric
Review

Review of research on path planning and control methods of flexible steerable needle puncture robot

, ORCID Icon, &

References

  • Zhao Y. Research on kinematic modeling and puncture path planning of flexible needle [Ph.D. thesis]. Harbin, China: Harbin University of Science and Technology; 2012.
  • Kong D. Research on path planning methods of flexible needle puncture system [M.S. thesis]. Shenyang, China: Northeastern University; 2014.
  • Zhang B. Toward robotic puncture based on flexible bevel-tip needle insertion [Ph.D. thesis]. Harbin, China: Harbin Institute of Technology; 2018.
  • Tang L, Chen Y, He X. Magnetic force aided compliant needle navigation and needle performance analysis. IEEE International Conference on Robotics and Biomimetics; 2008 May; Sanya, China. p. 612–616.
  • Ko S, Davies B, Rodriguez Y. Two-dimensional needle steering with a “programmable bevel” inspired by nature: modeling preliminaries. IEEE/RSJ International Conference on Intelligent Robots and Systems; Nov 2010; Taiwan, China. p. 2319–2324.
  • Wang Y, Liu C, Chen Y, et al. Study on one-direction bendable articulated needle. 3rd International Conference on Biomedical Engineering and Informatics; Nov 2010; Yantai, China. p. 2114–2117.
  • Wedlick T, Okamura A. Characterization of pre-curved needles for steering in tissue. 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Sept 2009; Minneapolis, MN. p. 1200–1203.
  • Majewicz A, Wedlick T, Reed K, et al. Evaluation of robotic needle steering inex vivo tissue. IEEE International Conference on Robotics and Automation; May 2010; Anchorage, AK. p. 2068–2073.
  • Webster R, Kim J, Cowan N, et al. Nonholonomic modeling of needle steering. Int J Robot Res. 2006;25:509–525.
  • Webster R, Memisevic J, Okamura A. Design considerations for robotic needle steering. In: Institute of Electrical and Electronics Engineers Lnc. 2005. p. 3588–3594.
  • Zhang Y, Zhao Y, Tu F, et al. A review on path planning of flexible needle. J Harbin Univ Sci Technol. 2011;16:7–11.
  • Liu W, Yang Z, Li P, et al. Mechanics of tissue rupture during needle insertion in transverse isotropic soft tissue. Med Biol Eng Comput. 2019;57(6):1353–1366.
  • Adagolodjo Y, Goffin L, Mathelin M, et al. Robotic insertion of flexible needle in deformable structures using inverse Finite-Element simulation. IEEE Trans Robot. 2019;35(3):697–708.
  • Fu J, Gao D, Zhao M, et al. Simulation of coupling process of flexible needle insertion into soft tissue based on ABAQUS. J Qinghai Univ. 2019;37:61–67.
  • Sedeh S, Ahmadian T, Janabi F. Modeling, simulation, and optimal initiation planning for needle insertion into the liver. J Biomech Eng. 2010;132(4):1–11.
  • Zhang J, Zhong Y, Gu C. Deformable models for surgical simulation: a survey. IEEE Rev Biomed Eng. 2018;11:143–164.
  • Zhu Z, Li H. The human soft tissue hyper viscoelastic biological model and puncture simulation in virtual surgery. Chin J Appl Mech. 2019;36:304–309.
  • Zhao Y, Fang Y, Zhang Y, et al. Study on bending modeling of cannula flexible needle inserting into soft tissue based on finite element method. Chin J Sci Instrum. 2020;41:202–211.
  • Alterovitz R, Goldberg K, Okamura A. Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. Proceedings of the 2005 IEEE International Conference on Robotics and Automation; Barcelona, Spain. 2005. p. 1640–1645.
  • Alterovitz R, Lim A, Goldberg K, et al. Steering flexible needles under Markov Motion Uncertainty. IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005; Edmonton, Canada. p. 120–125.
  • Alterovitz R, Branicky M, Goldberg K. Motion planning under uncertainty for Image-Guided medical needle steering. Int J Rob Res. 2008;27(11–12):1361–1374.
  • Wooram P, Jin S, Yu Z, et al. Diffusion-based motion planning for a nonholonomic flexible needle model. IEEE International Conference on Robotics and Automation; 2005; Barcelona, Spain. p. 4600–4605.
  • Park W, Liu Y, Zhou Y, et al. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map. Robotica. 2008;26:419–434.
  • Park W, Wang Y, Chirikjian G. Path planning for flexible needles using second order error propagation. Springer Tracts Adv Robot. 2010;57:583–595.
  • Park W, Wang Y, Chirikjian G. The path-of-probability algorithm for steering and feedback control of flexible needles. Int J Rob Res. 2010;29:813–830.
  • Duindam V, Alterovitz R, Sastry S, et al. Screw-Based motion planning for Bevel-Tip flexible needles in 3D environments with obstacles. IEEE International Conference on Robotics and Automation; May 19–23; Pasadena, CA: Institute of Electrical and Electronics Engineers Inc; 2008. p. 2483–2488.
  • Sadati N, Torabi M. Adaptive 2D-path optimization of steerable bevel-tip needles in uncertain model of brain tissue. World Congress on Computer Science and Information Engineering. IEEE Computer Society; 2009. p. 254–260.
  • Zhang Y, Zhao Y, Chen H. 2D planning of bevel tip flexible needle in soft tissue. Robot. 2011;33:750–757.
  • Zhao Y, Zhang Y, Tu F. Reverse path planning for flexible needle in 2D soft tissue with obstacles. 2nd International Conference on Frontiers of Manufacturing and Design Science; Taichung, Taiwan, China; 2011. p. 4132–4137.
  • Lee J, Park W. A Probability-Based path planning method using fuzzy logic. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014); Sep 14–18; Chicago, IL: Institute of Electrical and Electronics Engineers Inc; 2014. p. 2978–2984.
  • Lee J, Park W. Insertion planning for steerable flexible needles reaching multiple planar targets. New Horizon. 2015;40:2377–2383.
  • Bobrenkov O, Lee J, Park W. A new Geometry-Based plan for inserting flexible needles to reach multiple targets. Robotica. 2014;32(6):985–1004.
  • Sun W, Alterovitz R. Motion planning under uncertainty for medical needle steering using optimization in belief space. IEEE International Conference on Robotics and Automation; 2014; Hongkong, China.
  • Huo B, Zhao X, Han J, Xu  , et al. Path-tracking control of bevel-tip needles using model predictive control. IEEE 14th International Workshop on Advanced Motion Control; 2016; Auckland, New Zealand. p. 197–202.
  • Tan X, Yu P, Lim K, et al. Robust path planning for flexible needle insertion using markov decision processes. Int J Cars. 2018;13(9):1439–1451.
  • Xu J, Duindam V, Alterovitz R, et al. Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring random trees and backchaining. 4th IEEE Conference on Automation Science and Engineering; 2008; Washington, DC. p. 41–46.
  • Xu J, Duindam V, Alterovitz R, et al. Planning fireworks trajectories for steerable medical needles to reduce patient trauma. IEEE/RSJ International Conference on Intelligent Robots and Systems; 2009; St. Louis, MO. p. 4517–4522.
  • Sadati N, Torabi M, Vaziri R, et al. Soft-tissue modeling and image-guided control of steerable needles. 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine; 2009; Minneapolis, MN. p. 5122–5125.
  • Patil S, Alterovitz R. Interactive motion planning for steerable needles in 3D environments with obstacles. 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics; 2010; Tokyo, Japan. p. 893–899.
  • Patil S, Burgner J, Webster R, et al. Needle steering in 3-D via rapid replanning. IEEE Trans Robot. 2014;30(4):853–864.
  • Alterovitz R, Patil S, Derbakova A. Rapidly-exploring roadmaps: weighing exploration vs. refinement in optimal motion planning. Proceedings under IEEE International Conference on Robotics and Automation; 2011; Shanghai, China. p. 3706–3716.
  • Caborni C, Ko S, De M, et al. Risk-based path planning for a steerable flexible probe for neurosurgical intervention. IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2012; Rome, Italy. p. 866–871.
  • Bernardes M, Adorno B, Poignet P, et al. Robot-assisted automatic insertion of steerable needles with Closed-Loop imaging feedback and intraoperative trajectory replanning. Mechatronics. 2013;23(6):630–645.
  • Bernardes M, Adorno B, Borges G, et al. 3D robust online motion planning for steerable needles in dynamic workspaces using Duty-Cycled rotation. J Control Autom Electr Syst. 2014;25(2):216–227.
  • Moreira P, Patil S, Alterovtiz R. Needle steering in biological tissue using ultrasound-based online curvature estimation. 2014 IEEE International Conference on Robotics and Automation; 2014; Hongkong, China. p. 4368–4373.
  • Gustaaf J, Abayazid M. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. Int J Robot Res. 2014;33:1361–1374.
  • Xiong J, Li X, Gan Y, et al. Path planning for flexible needle insertion system based on improved rapidly-exploring random tree algorithm. IEEE International Conference on Information and Automation; 2015; Lijiang, China. p. 1545–1550.
  • Huang C, Lei Y. Novel model-based path planning method for robot-assisted flexible needle insertion. 13th IEEE Conference on Automation Science and Engineering; 2017; Xian, China. p. 1414–1419.
  • Fauser J, Sakas G, Mukhopadhyay A. Planning nonlinear access paths for temporal bone surgery. Int J Comput Assist Radiol Surg. 2018;13(5):637–646.
  • Li X, Li P, Xiong J. Path planning for flexible needle based on environment properties and random method. Comput Eng Appl. 2017;53:121–125.
  • Duindam V, Xu J, Alterovitz R, et al. 3D motion planning algorithms for steerable needles using inverse kinematics. 8th International Workshop on the Algorithmic Foundations of Robotics; 2008; Guanajuato, Mexico. p. 535–549.
  • Wang J, Sun D, Zheng J, et al. Optimal path planning for inserting a steerable needle into tissue. IEEE International Conference on Information and Automation; 2011; Shenzhen, China. p. 39–44.
  • Wang J, Li X, Zheng J, et al. Dynamic path planning for inserting a steerable needle into a soft tissue. IEEE/ASME Trans Mechatron. 2014;19(2):549–558.
  • Jiang S, Liu X, Bai S, et al. The potential field-based trajectory planning of needle invasion in soft tissue. Journal of Biomedical Engingeering. 2010;27:790–794. Aug,
  • Hu X, Zeng C. Obstacle avoidance and path planning for automatic needle puncturing. Academic conference on image graphics technology and applications; 2010; BeiJing, China.
  • Li Z, Kang J, Zhan J. Path planning of flexible needles in the environment with obstacles. J Donghua Univ (Nat Sci). 2015;41:130–134.
  • Khosrosereshki F, Rasouli F. Path planning for insertion of a bevel tip steerable needle into a soft tissue in the presence of obstacles. 22nd Iranian Conference on Electrical Engineering Tehran; 2014; Tehran, Iran. p. 1348–1353.
  • Li P, Jiang S, Yang J. A combination method of artificial potential field and improved conjugate gradient for trajectory planning for needle insertion into soft tissue. J Med Biol Eng. 2014;34(2):178–573.
  • Li P, Jiang S, Liang D, et al. Modeling of path planning and needle steering with path tracking in anatomical soft tissues for minimally invasive surgery. Med Eng Phys. 2017;41:35–45.
  • Hamze N, Peterlik L, Cotin S, et al. Preoperative trajectory planning for percutaneous procedures in deformable environments. Comput Med Imaging Graph. 2016;47:16–28.
  • Rossa C, Lehmann T, Sloboda R, Usmani  , et al. A data-driven soft sensor for needle deflection in heterogeneous tissue using just-in-time modeling. Med Biol Eng Comput. 2017;55(8):1401–1414. Aug.
  • Haddadi A, Hashtrudi-Zaad K. Development of a dynamic model for bevel-tip flexible needle insertion into soft tissues. Engineering in Medicine and Biology Society, EMBC, 2011. Annual International Conference of the IEEE, Aug, 2011. p. 7478–7482.
  • Hing J, Brooks A, Desai J. A biplanar fluoroscopic approach for the measurement, modeling, and simulation of needle and Soft-Tissue interaction. Med Image Anal. 2007;11(1):62–78.
  • Glozman D, Shoham M. Image-guided robotic flexible needle steering. IEEE Trans Robot. 2007;23(3):459–467.
  • Fichtinger G, Deguet A, Masamune K, et al. Image overlay guidance for needle insertion in Ct scanner. IEEE Trans Biomed Eng. 2005;52(8):1415–1424.
  • Krieger A, Song S, Cho N, et al. Development and evaluation of an actuated Mri-compatible robotic system for Mri-guided prostate intervention. IEEE ASME Trans Mechatron. 2012;18(1):273–284.
  • Krieger A, Susil R, Menard C, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng. 2005;52(2):306–313.
  • Tadayyon H, Lasso A, Kaushal A, et al. Target motion tracking in MRI-Guided transrectal robotic prostate biopsy. IEEE Trans Biomed Eng. 2011;58(11):3135–3142.
  • Moreira P, Boskma K, Misra S. Towards MRI-guided flexible needle steering using Fiber Bragg grating-based tip tracking. 2017 IEEE International Conference on Robotics and Automation; 2017; Macau, China. p. 4849–4854.
  • Aboofazeli M, Abolmaesumi P, Mousavi P. A new scheme for curved needle segmentation in three-dimensional ultrasound images. IEEE International Conference on Symposium on Biomedical Imaging: from Nano to Macro. IEEE Press; 2009.
  • Zhu M, Salcudean S. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation. IEEE Trans Med Imaging. 2011;30(7):1391–1400.
  • Boctor E, Choti M, Burdette E, et al. Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation. Int J Med Robot. 2008;4(2):180–191.
  • Neubach Z, Shoham M. Ultrasound-guided robot for flexible needle steering. IEEE Trans Biomed Eng. 2010;57(4):799–805.
  • Neshat H, Patel R. Real-time parametric curved needle segmentation in 3D ultrasound images. Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on IEEE, 2008.
  • Zhang R, Chen S, Ou J, et al. X-ray guided lumbar facet joint intra-articular injection for lumbar facet joint osteoarthritis. Clin Med Eng. 2009;16:16–18.
  • Bossi R, Shepherd W. X-Ray computed tomography for failure analysis investigations. Opt Express. 2021;29(2).
  • Tang H. Risk factors of infection after transrectal ultrasound-guided prostate puncture [MD thesis]. The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, June 2020.
  • Zhai Z, Zhong G, Yang L, et al. Comparison of ultrasound-guided transrectal and transperineal prostate biopsy. Chin J Min Inv Surg. 2020;20:405–408.
  • Pang H, Dong Y. The value of transrectal ultrasound-guided prostate biopsy combined with prostate antigen in the diagnosis of prostate cancer. Clin Res. 2021;29:132–134.
  • Huo X, Yang S, Guo Z. The clinical application study of low-dose CT-guided thoracic puncture biopsy. J Med Imaging. 2020;12:2228–2231.
  • Yang C, Wu Y, Hu Y, et al. Application of bipolar laser positioning navigator in CT-guided percutaneous transthoracic needle biopsy for lung cancer. Chin Clin Oncol. 2020;25:1116–1120.
  • Bi J. Research on key technologies of MRI-US image fusion navigation for prostate intervention [Ph.D. thesis]. Harbin University of Science and Technology, Harbin, China; 2019.
  • Shu Y. MRI-TRUS cognitive fusion-guided biopsy for the diagnosis of prostate cancer [M. D. thesis]. Shandong University, JiNan, China; 2019.
  • Jia X. Research on Key Technology of MRI-compatible breast biopsy robot based on double tendon-sheath coupling transmission [Ph.D. thesis]. Harbin University of Science and Technology, Harbin, China; 2020.
  • Romano J, Webster R, Okamura A. Teleoperation of steerable needles. Robotics and automation, 2007 IEEE International Conference on, 2007. p. 934–939.
  • Duchemin G, Maillet P, Poignet P, et al. A hybrid position/force control approach for identification of deformation models of skin and underlying tissues. IEEE Trans Biomed Eng. 2005;52(2):160–170.
  • Kallem V, Cowan N. Image guidance of flexible tip-steerable needles. IEEE Trans Robot. 2009;25(1):191–196.
  • Motaharifar M, Talebi H, Afshar A, et al. Adaptive observer-based controller design for a class of nonlinear systems with application to image guided control of steerable needles. Proceedings of the American Control Conference; Jun 2012. p. 4849–4854.
  • Reed K, Kallem V, Alterovitzt R, et al. Integrated planning and image-guided control for planar needle steering. IEEE Computer Society; 2008. p. 819–824.
  • Hauser K, Alterovitz R, Chentanez N, et al. Feedback control for steering needles through 3D deformable tissue using helical paths. Robot Sci Syst. 2009;28.
  • Rucker D, Das J, Gilbert H, et al. Sliding mode control of steerable needles. IEEE Trans Robot. 2013;29(5):1289–1299.
  • Abayazid M, Kemp M, Misra S. 3D flexible needle steering in soft-tissue phantoms using fiber bragg grating sensors. Institute of Electrical and Electronics Engineers Inc; May 2013. p. 5846–5849.
  • Zhao X, Guo H, Ye D, et al. Comparison of estimation and control methods for flexible needle in 2D. In Proceedings of the 28th Chinese Control and Decision Conference. IEEE, 2016. p. 5444–5449.
  • Hui G. Control methods and experiment of flexible needle puncture in the soft tissue [Ph.D. thesis]. Northeastern University, China; 2016.
  • Fallahi B, Rossa C. Partial estimation of needle tip orientation in generalized coordinates in ultrasound image-guided needle insertion. IEEE International Conference on Advanced Intelligent Mechatronics; 2016; Banff, Canada. p. 1604–1609.
  • Mignon P, Philippe P, Jocelyne T. Automatic robotic steering of flexible needles from 3D ultrasound images in phantoms and ex vivo biological tissue. Ann Biomed Eng. 2018;46(9):1385–1396.
  • Hauser K, Alterovitz R, Chentanez N, et al. Event-triggered 3D needle control using a Reduced-Order computationally efficient bicycle model in a constrained optimization framework. J Med Robot Res. 2018;4:184–186.
  • Chevrie J, Shahriari N, Babel M, et al. Flexible needle steering in moving biological tissue with motion compensation using ultrasound and force feedback. IEEE Robot Autom Lett. 2018;3(3):2338–2345.
  • Belbachir E, Golkar E, Bayle B, et al. Automatic planning of needle placement for Robot-Assisted percutaneous procedures. Int J Comput Assist Radiol Surg. 2018;13(9):1429–1438.
  • Wartenberg M, Schornak J, Gandomi K, et al. Closed-Loop active compensation for needle deflection and target shift during cooperatively controlled robotic needle insertion. Ann Biomed Eng. 2018;46(10):1582–1594.
  • Misra S, Reed K, Schafer B, et al. Observations and models for needle-tissue interactions. Institute of Electrical and Electronics Engineers Inc; May 2009. p. 2687–2692.
  • Ko S, Frasson L, Baena F. Closed-Loop planar motion control of a steerable probe with a “programmable bevel” inspired by nature. IEEE Trans Robot. 2011;27(5):970–983.
  • Roesthuis R, Van N, Van J, et al. Modeling and steering of a novel actuated-tip needle through a soft-tissue simulant using Fiber Bragg Grating sensors. Institute of Electrical and Electronics Engineers Inc; Jun 2015. 29, 2283–2289.
  • Dupont P, Lock J, Itkowitz B, et al. Design and control of concentric-tube robots. IEEE Trans Robot. 2010;26(2):209–225.
  • Tang L, Chen Y, He X. Magnetic force aided compliant needle navigation and needle performance analysis. IEEE Computer Society; Dec 2007. p. 612–616.
  • Wedlick T, Okamura M. Characterization of pre-curved needles for steering in tissue. IEEE Computer Society. Sept 2009; p. 1200–1203.
  • Webster R, Jones B. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res. 2010;29(13):1661–1683.8.
  • Camarillo DB, Milne CF, Carlson CR, et al. Mechanics modeling of tendon driven continuum manipulators. IEEE Trans Robot. 2008;24(6):1262–1273.
  • Chen Z, Chen Y. Analysis of multi-hinge compliant needle insertion. IEEE International Conference on Virtual Environments. IEEE, 2009. p. 314–318.
  • Bassett E, Slocum H, Masiakos P. Design of a mechanical clutch based needle-insertion device. Proceedings of the National Academy of Sciences, 2009. 106, p. 5540–5545.
  • Wang L. Design of novel tip needle and research on its trajectory planning [M.S. thesis]. Harbin Institute of Technology, Harbin, China; 2013.