634
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Research on augmented reality navigation of in vitro fenestration of stent-graft based on deep learning and virtual-real registration

, , , , , & show all

References

  • Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes. Nat Rev Cardiol. 2021;18(5):1–12. doi: 10.1038/s41569-020-00472-6.
  • Swerdlow NJ, Wu WW, Schermerhorn ML. Open and endovascular management of aortic aneurysms. Circ Res. 2019;124(4):647–661. doi: 10.1161/CIRCRESAHA.118.313186.
  • Coles-Black J, Barber T, Bolton D, et al. A systematic review of three-dimensional printed template-assisted physician-modified stent grafts for fenestrated endovascular aneurysm repair. J Vasc Surg. 2021;74(1):296–306.e291. doi: 10.1016/j.jvs.2020.08.158.
  • Chen X, Xu L, Wang Y, et al. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J Biomed Inf. 2015;55:124–131. doi: 10.1016/j.jbi.2015.04.003.
  • Chan HHL, Haerle SK, Daly MJ, et al. An integrated augmented reality surgical navigation platform using multi-modality imaging for guidance. PLoS ONE. 2021;16(4):e0250558. doi: 10.1371/journal.pone.0250558.
  • Han B, Li R, Huang T, et al. An accurate 3D augmented reality navigation system with enhanced autostereoscopic display for oral and maxillofacial surgery. Int J Med Robot. 2022;18(4):e2404. doi: 10.1002/rcs.2404.
  • Pérez-Pachón L, Sharma P, Brech H, et al. Effect of marker position and size on the registration accuracy of HoloLens in a non-clinical setting with implications for high-precision surgical tasks. Int J Comput Assist Radiol Surg. 2021;16(6):955–966. doi: 10.1007/s11548-021-02354-9.
  • Shu X-J, Wang Y, Xin H, et al. Real-time augmented reality application in presurgical planning and lesion scalp localization by a smartphone. Acta Neurochir (Wien). 2022;164(4):1069–1078. doi: 10.1007/s00701-021-04968-z.
  • García-Mato D, Moreta-Martínez R, García-Sevilla M, et al. Augmented reality visualization for craniosynostosis surgery. Comput Methods Biomech Biomed Eng: Imaging Vis. 2021;9(4):392–399. doi: 10.1080/21681163.2020.1834876.
  • Gao Y, Zhao Y, Xie L, et al. A projector-based augmented reality navigation system for computer-assisted surgery. Sensors (Basel). 2021;21(9):2931. doi: 10.3390/s21092931.
  • Liao H, Inomata T, Sakuma I, et al. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Trans Biomed Eng. 2010;57(6):1476–1486. doi: 10.1109/TBME.2010.2040278.
  • Chen F, Cui X, Han B, et al. Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy. Comput Methods Program Biomed. 2021;201:105952. doi: 10.1016/j.cmpb.2021.105952.
  • Ma L, Zhao Z, Chen F, et al. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12(12):2205–2215. doi: 10.1007/s11548-017-1652-z.
  • Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention—MICCAI 2015. Cham: Springer Inter­national Publishing, 2015; p. 234–241. doi: 10.1007/978-3-319-24574-4_28.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016; p. 770–778. doi: 10.1109/CVPR.2016.90.
  • Oktay O, Schlemper J, Folgoc LL, et al. Attention U-Net: learning where to look for the pancreas. ArXiv e-prints, 2018: arXiv:1804.03999.
  • Chen LC, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40(4):834–848. doi: 10.1109/TPAMI.2017.2699184.
  • Sieren MM, Widmann C, Weiss N, et al. Automated segmentation and quantification of the healthy and diseased aorta in CT angiographies using a dedicated deep learning approach. Eur Radiol. 2022;32(1):690–701. doi: 10.1007/s00330-021-08130-2.
  • Maher GD, Fleeter CM, Schiavazzi DE, et al. Geometric uncertainty in patient-specific cardiovascular modeling with convolutional dropout networks. Comput Methods Appl Mech Eng. 2021;386:114038. doi: 10.1016/j.cma.2021.114038.
  • Shaw L, Samady H, Baskaran L, et al. Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning. PLoS ONE. 2020;15(5):e0232573. doi: 10.1371/journal.pone.0232573.
  • Jiang Z, Do HN, Choi J, et al. A deep learning approach to predict abdominal aortic aneurysm expansion using longitudinal data. Front Phys. 2020;7(235):1–13. doi: 10.3389/fphy.2019.00235.
  • Pirruccello JP, Chaffin MD, Chou EL, et al. Deep learning enables genetic analysis of the human thoracic aorta. Nat Genet. 2022;54(1):40–51. doi: 10.1038/s41588-021-00962-4.
  • Comelli A, Dahiya N, Stefano A, et al. Deep learning approach for the segmentation of aneurysmal ascending aorta. Biomed Eng Lett. 2021;11(1):15–24. doi: 10.1007/s13534-020-00179-0.
  • Caradu C, Spampinato B, Vrancianu AM, et al. Fully automatic volume segmentation of infrarenal abdominal aortic aneurysm computed tomography images with deep learning approaches versus physician controlled manual segmentation. J Vasc Surg. 2021;74(1):246–256.e246. doi: 10.1016/j.jvs.2020.11.036.
  • Saitta S, Sturla F, Caimi A, et al. A deep learning-based and fully automated pipeline for thoracic aorta geometric analysis and planning for endovascular repair from computed tomography. J Digit Imaging. 2022;35(2):226–239. doi: 10.1007/s10278-021-00535-1.
  • Yu Y, Gao Y, Wei J, et al. A three-dimensional deep convolutional neural network for automatic segmentation and diameter measurement of type B aortic dissection. Kor J Radiol. 2021;22(2):168–178. doi: 10.3348/kjr.2020.0313.
  • Cheng J, Tian S, Yu L, et al. A deep learning algorithm using contrast-enhanced computed tomography (CT) images for segmentation and rapid automatic detection of aortic dissection. Biomed Signal Process Control. 2020;62:102145. doi: 10.1016/j.bspc.2020.102145.
  • Lyu T, Yang G, Zhao X, et al. Dissected aorta segmentation using convolutional neural networks. Comput Methods Programs Biomed. 2021;211:106417. doi: 10.1016/j.cmpb.2021.106417.
  • Chen D, Zhang X, Mei Y, et al. Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification. Med Image Anal. 2021;69:101931. doi: 10.1016/j.media.2020.101931.