73
Views
1
CrossRef citations to date
0
Altmetric
Articles

TiO2 nanotubes catalyzed the synthesis of azo-linked xanthenes under ultrasonic conditions

, &
Pages 1057-1063 | Received 29 Feb 2016, Accepted 22 Sep 2016, Published online: 06 Mar 2017

References

  • Fennema, O. R. Food Chemistry, 3rd edition; Marcel Dekker: New York, 1996.
  • Khaligh, N. G.; Shirini, F. N-Sulfonic acid poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst for one-pot synthesis of xanthene derivatives in dry media under ultrasound irradiation. Ultrason. Sonochem. 2015, 22, 397–403.
  • Khaligh, N. G. Ultrasound-assisted one-pot synthesis of substituted coumarins catalyzed by poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst. Ultrason. Sonochem. 2013, 20, 1062–1068.
  • Khaligh, N. G. Poly(4-vinylpyridinium) hydrogen sulfate: A novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under conventional heating and ultrasound irradiation. Ultrason. Sonochem. 2012, 19, 736–739.
  • Chen, X.; Mao, S. S. Synthesis of titanium dioxide (TiO2) nanomaterials. J. Nanosci. Nanotechnol. 2006, 6, 906–925.
  • Xu, H.; Tao, X.; Wang, D. T.; Zheng, Y. Z.; Chen, J. F. Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films. Electrochim. Acta 2010, 55, 2280–2285.
  • Baram, N.; Starosvetsky, D.; Starosvetsky, J.; Epshtein, M.; Armon, R.; Ein-Eli, Y. Photocatalytic inactivation of microorganisms using nanotubular TiO2. Appl. Catal. B 2011, 101, 212–219.
  • Kar, A.; Raja, K. S.; Misra, M. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface Coat. Technol. 2006, 201, 3723–3731.
  • Kefi, B. B.; El Atrache, L. L.; Kochkar, H.; Ghorbel, A. TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. J. Environ. Sci. 2011, 23, 860–867.
  • Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075.
  • Gong, J.; Lai, Y.; Lin, C. Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochim. Acta 2010, 55, 4776–4782.
  • Chouhan, A. P. S.; Sarma, A. K. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renew. Sust. Energ. Rev. 2011, 15, 4378–4399.
  • (a) Khaligh, N. G.; Mihankhah, T. Aldol condensations of a variety of different aldehydes and ketones under ultrasonic irradiation using poly(N‐vinylimidazole) as a new heterogeneous base catalyst under solvent‐free conditions in a liquid-solid system. Chin. J. Catal. 2013, 34, 2167–2173. (b) Khaligh, N. G.; Ghasem-Abadi, P. G.; Mihankhah, T. Poly(n-butyl-4-vinylpyridinium) borohydride as a new stable and efficient reducing agent in organic synthesis. C. R. Chim. 2014, 17, 23–29.
  • Nikpassand, M.; Zare, L.; Saberi, M. Ultrasound-assisted L-proline catalyzed synthesis of novel derivatives of azo-linked dihydropyridines. Monatsh. Chem. 2012, 143, 289–293.
  • (a) Baoyu, W.; Jinghui, Z.; Zhanzuo, L. Preparation and characterization of TiO2 nanotubes. Fine Chem. 2003, 20, 333–336. (b) Sikhwivhilu, L. M.S.; Ray, S.; Coville, N. J. Influence of bases on hydrothermal synthesis of titanate nanostructures. Appl. Phys. A 2009, 94, 963–973.
  • Hussain, M.; Ahmad, M.; Nisar, A.; Sun, H.; Karim, S.; Khan, M.; Khan, S. D.; Iqbal, M.; Hussain, S. Z. Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres. New J. Chem. 2014, 38, 1424–1432.
  • Pyshkin, S. L.; Ballato, J. M. Optoelectronics—Advanced materials and devices. In Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods, Venkatachalam, S.; Hayashi, H.; Ebina, T.; Nanjo, H., Editors; InTech, 2013, Ch. 5, pp. 115–136.
  • Suslick, K. S.; Didenko, Y.; Fang, M. M.; Hyeon, T.; Kolbeck, K. J.; McNamara III, W. B.; Mdleleni, M. M.; Wong, M. Acoustic cavitation and its chemical consequences. Philos. Trans. R. Soc. A 1999, 357, 335–353.
  • Yasui, K. Fundamentals of acoustic cavitation and sonochemistry. In Pankaj Ashokkumar, M., Editors, Theoretical and Experimental Sonochemistry Involving Inorganic Systems; Springer: New York, 2011, pp. 1–30.
  • Suslick, K. S.; Crum, L. A. Sonochemistry and sonoluminescence. In Handbook of Acoustics, Crocker, M. J., Editor; Wiley Interscience: New York, 1998, pp. 243–253.
  • Bonelli, B.; Cozzolino, M.; Tesser, R.; Di Serio, M.; Piumetti, M.; Garrone, E.; Santacesaria, E. Study of the surface acidity of TiO2/SiO2 catalysts by means of FTIR measurements of CO and NH3 adsorption. J. Catal. 2007, 246, 293–300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.