286
Views
25
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterization of Mn5O8 nanoparticles: A novel and facile pulse cathodic electrodeposition followed by heat treatment

, , &
Pages 1085-1089 | Received 13 May 2016, Accepted 16 Jan 2017, Published online: 06 Mar 2017

References

  • Lou, J. D.; Lian, L. X.; Huang, L. H.; Wang, Q.; Zou, X. N. Effective oxidation of alcohols under heterogeneous conditions with a new reagent: manganese dioxide supported on graphite. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2011, 41, 1342–1345.
  • Chen, F.; Li, K.; Li, H. Catalytic activity for oxygen reduction of dual catalysts system based on tetranitro-metal phthalocyanine and nano-manganese dioxide. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2015, 45, 1813–1818.
  • Li, Y.; Zhou, Z.; Jicail, L.; Ye, K.; Yu, K. A new way for preparation and characterization of Cr-doped LiMnO2 cathode materials for lithium ion batteries. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2016, 46, 892–895.
  • Aghazadeh, M.; Ghannadi Maragheh, M., Ganjali, M. R.; Norouzi, P.; Gharailou, D.; Farnoush, F. Electrochemical preparation and supercapacitive performance of α-MnO2 nanospheres with secondary wall-like structures. J. Mater. Sci. Mater. Electron. 2016. doi:10.1007/s10854-016-4757.
  • Lucio-Porto, R.; Gomez, I. Synthesis of manganese oxide nanocompounds for electrodes in electrochemical capacitors. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2012, 42, 833–838.
  • Aghazadeh, M.; Ghannadi Maragheh, M.; Ganjali, M. R.; Norouzi, P.; Faridbod, F. Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl. Surf. Sci. 2016, 364, 141–147.
  • Zhang, Y.; Sun, C.; Lu, P.; Li, K.; Song, S.; Xue, D. Crystallization design of MnO2 towards better supercapacitance. Cryst. Eng. Comm. 2012, 14, 5892–5897.
  • Tizfahm, J.; Aghazadeh, M.; Maragheh, M. G.; Ganjali, M. R.; Norouzi, P.; Faridbod, F. Electrochemical preparation and evaluation of the supercapacitive performance of MnO2 nanoworms. Mater. Lett. 2016, 167, 153–156.
  • Oswald, H. R.; Feitknecht, W.; Wampetich, M. J. Crystal Data of Mn5O8 and Cd2Mn3O8. Nature 1965, 207, 72–72.
  • Oswald, H. R.; Wampetich, M. J. Die Kristallstrukturen von Mn5O8 und Cd2Mn3O8. Helv. Chim. Acta. 1967, 50, 2023–2034.
  • Rask, J. H.; Buseck, P. R. Topotactic relations among pyrolusite, manganite, and Mn5O8: A high-resolution transmission electron microscopy investigation. Am. Mineral. 1986, 71, 805–814.
  • Yamamoto, N.; Kiyama, M.; Takada, T. A new preparation method of Mn5O8. Jpn. J. Appl. Phys. 1973, 12, 1827–1828.
  • Fritsch, S.; Sarrias, J.; Rousset, A.; Kulkarni, G. U. Low-temperature oxidation of Mn3O4 hausmannite. Mater. Res. Bull. 1998, 33, 1185–1194.
  • Gao, T.; Norby, P.; Krumeich, F.; Okamoto, H.; Nesper, R.; Fjellvag, H. Synthesis and properties of layered-structured Mn5O8 nanorods. J. Phys. Chem. C 2010, 114, 922–928.
  • Punnoose, A.; Magnone, H.; Seehra, M. S. Synthesis and antiferromagnetism of Mn5O8. IEEE Trans. Magnet. 2001, 37, 2150–2152.
  • Sugawara, M.; Ohno, M.; Matsuki, K. Novel preparation method of manganese(II) manganese(IV) oxide (Mn2Mn3O8, Mn5O8) by citrate process. Chem. Lett. 1991, 1465–1468.
  • Prinz, G. A. Magnetoelectronics. Science 1998, 282, 1660–1663.
  • Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; S. Von Molnar; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.
  • Park, Y. J.; Doeff, M. M. Synthesis and electrochemical characterization of M2Mn3O8 (M = Ca, Cu) compounds and derivatives. Solid State Ion. 2006, 177, 893–900.
  • Tian, Z. R.; Tong, W.; Wang, J. Y.; Duan, N. G.; Krishnan, V. V.; Sui, S. L. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 1997, 276, 926–930.
  • Azzoni, C. B.; Mozzati, M. C.; Galinetto, P.; Paleari, A.; Massarotti, V.; Capsoni, D.; Bini, M. Thermal stability and structural transition of metastable Mn5O8. Solid State. Commun. 1999, 112, 375–378.
  • Uddin, I.; Poddar, P.; Ahmad, A. Extracellular biosynthesis of water dispersible, protein capped Mn5O8 nanoparticles using the fungus fusarium oxysporum and study of their magnetic behavior. J. Nanoeng. Nanomanufact. 2013, 3, 91–97.
  • Aghazadeh, M.; Asadi, M.; Maragheh, M. G.; Ganjali, M. R.; Norouzi, P. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl. Surf. Sci. 2016, 364, 726–731.
  • Aghazadeh, M.; Malek Barmi, A. A.; Shiri, H. M.; Sedaghat, S. Cathodic electrodeposition of Y(OH)3 and Y2O3 nanostructures from chloride bath. Part II: Effect of the bath temperature on the crystal structure, composition and morphology. Ceram. Int. 2013, 39, 1045–1055.
  • Aghazadeh, M.; Arhami, B.; Barmi, A. A. M.; Hosseinifard, M.; Gharailou, D. La(OH)3 and La2O3 nanospindles prepared by template-free direct electrodeposition followed by heat-treatment. Mater. Lett. 2014, 115, 68–71.
  • Aghazadeh, M.; Hosseinifard, M. Electrochemical preparation of ZrO2 nanopowder: Impact of the pulse current on the crystal structure, composition and morphology. Ceram. Int. 2013, 39, 4427–4435.
  • Aghazadeh, M.; Ahmadi, R.; Gharailou, D.; Ganjali, M. R. A facile route to preparation of Co3O4 nanoplates and investigation of their charge storage ability as electrode material for supercapacitors. J. Mater. Sci. Mater. Electron. 2016. doi:10.1007/s10854-016-4882-x.
  • Wang, W. Z.; Xu, C. K.; Wang, G. H.; Liu, Y. K.; Zheng, C. L. Preparation of smooth single-crystal Mn3O4 nanowires. Adv. Mater. 2002, 14, 837–840.
  • Zhang, Y. C.; Qiao, T.; Hu, X. Y. Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires. J. Solid State Chem. 2004, 177, 4093–4097.
  • Ahmed, K. A. M.; Zeng, Q.; Wu, K.; Huang, K. Mn3O4 nanoplates and nanoparticles: Synthesis, characterization, electrochemical and catalytic properties. J. Solid State Chem. 2010, 183, 744–751.
  • Aghazadeh, M.; Maragheh, M. G.; Ganjali, M. R.; Norouzi, P. One-step electrochemical preparation and characterization of nanostructured hydrohausmannite as electrode material for supercapacitors. RSC Adv. 2016, 6, 10442–10449.
  • Koza, J. A.; Schroen, I. P.; Willmering, M. M.; Switzer, J. A. Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films. Chem. Mater. 2014, 26, 4425–4432.
  • Yousefi, T.; Nozad Golikand, A.; Mashhadizadeh, M. H.; Aghazadeh, M. Hausmannite nanorods prepared by electrodeposition from nitrate medium via electrogeneration of base. J. Taiwan Inst. Chem. Eng. 2012, 43, 614–618.
  • Berbenni, V.; Marini, A. Oxidation behaviour of mechanically activated Mn3O4 by TGA/DSC/XRPD. Mater. Res. Bull. 2003, 38, 1859–1866.
  • Lee, J. A.; Newnham, C. E.; Stone, F. S.; Tye, F. L. Thermal decomposition of managanese oxyhydroxide. J. Solid State Chem. 1980, 31, 81–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.