202
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Influence of modified CNT-Ag nanocomposite addition on photocatalytic degradation of methyl orange by mesoporous TiO2

, &
Pages 1168-1174 | Received 28 Jul 2016, Accepted 16 Jan 2017, Published online: 23 Mar 2017

References

  • Koo, Y.; Littlejohn, G.; Collins, B.; Yun, Y.; Shanov, V. N.; Schulz, M.; Pai, D. Jagannathan Sankar. Synthesis and characterization of Ag–TiO2–CNT nanoparticle composites with high photo catalytic activity under artificial light. Compos. Part B. 2014, 57, 105–111.
  • Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature (London). 1972, 238, 37–38.
  • Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.
  • Wang, X. C.; Yu, J. C.; Chen, Y. L.; Wu, L.; Fu, X. Z. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts. Environ. Sci. Technol. 2006, 40, 2369–2374.
  • Marques, R. R. N.; Sampaio, M. J.; Carrapic, P. M.; Claudia, O. A.; Silva, G.; Morales-Torresa, S.; Draˇ zi´cb, G.; Fariaa, J. L.; Silva, A. M. T. Photocatalytic degradation of caffeine: Developing solutions for emerging pollutants. Catal Today. 2013, 209, 108–115.
  • Gao, B.; Chen, G. Z.; Puma, G. L. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photo catalytic activity. Appl. Catal. B Environ. 2009, 89, 503–509.
  • Bo, Y.; Ji-tong, W.; Wei, X.; Dong-hui, L.; Wen-ming, Q.; Li-cheng, L. Preparation of TiO2/mesoporous carbon composites and their photo catalytic performance for methyl orange degradation. New Carbon Mater. 2013, 28, 47–54.
  • Liu, J.; An, T.; Li, G.; Bao, N.; Sheng, G.; Fu, J. Preparation and characterization of highly active mesoporous TiO2 photocatalysts by hydrothermal synthesis under weak acid conditions. Micropor. Mesopor. Mater. 2009, 124, 197–203.
  • Zhou, W. J.; Leng, Y. H.; Hou, D. M.; Li, H. D.; Li, L. G.; Li, G. Q.; Liu, H.; Chen, S. W. Phase transformation and enhanced photo catalytic activity of S-doped Ag2O/TiO2 heterostructured nanobelts. Nanoscale. 2014, 6, 4698–4704.
  • Tan, H.; Zhao, Z.; Zhu, W.-B.; Coker, E. N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. Oxygen vacancy enhanced photo catalytic activity of pervoskite SrTiO3. Appl. Mater. Interf. 2014, 6, 19184–19190.
  • Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, C. Explaining the enhanced photo catalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B. 2003, 107, 4545–4549.
  • Lina, B.; Yanga, G.; Yanga, B.; Zhaob, Y. Construction of novel three dimensionally ordered macroporouscarbon nitride for highly efficient photocatalytic activity. Appl. Catal. B Environ. 2016, 198, 276–285.
  • Ling, L.; Wang, C.; Ni, M.; Shang, C. Enhanced photo catalytic activity of TiO2/single-walled carbon nanotube (SWCNT) composites under UV-A irradiation. Sep. Purif. Technol. 2016, 169, 273–278.
  • Yen, C.-Y.; Lin, Y.-F.; Hung, C.-H.; Tseng, Y.-H.; Ma, C.-C.; Chang, M.-C.; Shao, H. The effects of synthesis procedures on the morphology and photo catalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology. 2008, 19, 045604–045615.
  • Ming-liang, C.; Feng-jun, Z.; Oh, W.-c. Synthesis characterization and photo catalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Mater. 2009, 24, 159–166.
  • Wang, W.; Serp, P.; Kalck, P.; Lu´ıs Faria, J. visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. Chem. 2005, 235, 194–199.
  • Uddin, S. M.; Mahmud, T.; Wolf, C.; Glanz, C.; Kolaric, I.; Volkmer, C.; Holler, H.; Wienecke, U.; Hans-Jorg Fecht, S. R. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Technol. 2010, 70, 2253–2257.
  • Yuen, S.-M.; Chen-Chi, M.; Ma, M.; Chuang, C.-Y.; Hsiao, Y.-H.; Chiang, C.-L.; Yu, A.-d. Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites. Compos. Part A. 2008, 39, 119–125.
  • Oha, W.-C.; Zhang, F.-J.; Chen, M.-L. Characterization and photodegradation characteristics of organic dye for Pt–titania combined multi-walled carbon nanotube composite catalysts. J. Industr. Eng. Chem. 2010, 16, 321–326.
  • Ma, P. C.; Tang, B. Z.; Kima, J.-K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon. 2008, 46, 1497–1505.
  • Gao, B.; Peng, C.; Chen, G. Z.; Puma, G. L. Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol–gel method. Appl. Catal. B Environ. 2008, 85, 17–23.
  • Ahmmad, B.; Kusumoto, Y.; Somekawa, S.; Ikeda, M. Carbon nanotubes synergistically enhance photo catalytic activity of TiO2. Catal. Commun. 2008, 9, 1410.
  • Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.
  • Feng-jun, Z.; Ming-liang, C.; Won-chun, O. Photo electro catalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation. New Carbon Mater. 2010, 25, 348–356.
  • Lee, S.-w.; Sigmund, W. M. Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem. Commun. 2003, 25, 780–781.
  • Ma, L.; Chen, A.; Zhang, Z.; Lu, J.; He, H.; Li, C. In-situ fabrication of CNT/TiO2 interpenetrating network film on nickel substrate by chemical vapor deposition and application in photoa-ssisted water electrolysis. Catal. Commun. 2012, 21, 27–31.
  • Kuo, D.-H.; Hsu, W.-T.; Yang, Y.-Y. From the fluorescent lamp-induced bactericidal performance of sputtered Ag/TiO2 films to re-explore the photo catalytic mechanism. Appl. Catal. B Environ. 2016, 191–200.
  • Ha, T.-J.; Park, H.-H.; Jung, S.-Y.; Yoon, S.-J.; Kim, J.-S.; Jang, H. W. Effect of porosity on the Seebeck coefficient of mesoporous TiO2 thin films. Thin Solid Films 2010, 518, 7196–7198.
  • Nam, D. H.; Cha, S. I.; Lim, B. K.; Park, H. M.; Han, D. S.; Hong, S. H. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon. 2012, 50, 2417–2423.
  • Kim, J. D.; Yun, H.; Kim, G. C.; Lee, C. W.; Choia, H. C. Antibacterial activity and reusability of CNT-Ag and GO Ag nanocomposites. Appl. Surf. Sci. 2013, 283, 227–233.
  • Rajasekar, K.; Thennarasu, S.; Rajesh, R.; Abirami, R.; Balkis Ameen, K.; Ramasubbu, A. Preparation of mesoporous TiO2/CNT nanocomposites by synthesis of mesoporous titania via EISA and their photo catalytic degradation under visible light irradiation. Solid State Sci. 2013, 26, 45e52.
  • Ganesh, I.; Kumar, P. P.; Annapoorna, I.; Sumliner, J. M.; Ramakrishna, M.; Hebalkar, N. Y.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photo electrochemical, and photocatalyticapplications. Appl. Surf. Sci. 2014, 293, 229–247.
  • Li, Z.; Gao, B.; Chen, G. Z.; Mokaya, R.; Sotiropoulos, S.; Puma, G. L. Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photo catalytic/photoelectrocatalytic properties. Appl. Catal. B Environ. 2011, 110, 50–57.
  • Ha, T.-J.; Jung, S.-Y.; Bae, J.-H.; Lee, H.-L.; Jang, H. W.; Yoon, S.-J.; Shin, S.; Cho, H. H.; Park, H.-H. Analysis of heat transfer in ordered and disordered mesoporous TiO2 films by finite element analysis. Micropor. Mesopor. Mater. 2011, 144, 191–194.
  • Soler-Illia, G. J.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nano networks and hierarchical structures. Chem. Rev. 2002, 102, 4093.
  • Du, J.; Liu, Z.; Li, Z.; Han, B.; Huang, Y.; Gao, Y. Mesoporous TiO2 with wormlike structure synthesized via interfacial surfactant assisted route. Micropor. Mesopor. Mater. 2005, 83, 19–24.
  • Hidalgo, D.; Messina, R.; Sacco, A.; Manfredi, D.; Vankova, S.; Garrone, E.; Saracco, G.; Herna´ndez, S. Thick mesoporous TiO2 films through a sol-gel method involving a non-ionic surfactant: Characterization and enhanced performance for water photo-electrolysis. Int. J. Hydrogen Energy. 2014.
  • Park, H.-H.; Jung, S.-Y.; Hong, M.-H.; Park, C.-S. Mesoporous structure for thermoelectrics, material and processes for energy. Communicating current research and technological developments, A. Mendez-Vilas, ED, Formatex, 2013.
  • He, L.; Du, N.; Wang, C.; Chen, X.; Zhang, W. A facile synthesis of graphene-supported mesoporous TiO2 hybrid sheets with uniform coverage and controllable pore diameters. Micropor. Mesopor. Mater. 2015, 206, 95–101.
  • Faycal Atitar, M.; Ismail, A. A.; Al-Sayari, S. A.; Bahnemann, D.; Afanasev, D.; Emeline, A. V. Mesoporous TiO2 nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photo catalytic performance. Chem. Eng. J. 2015, 264, 417–424.
  • Mohamed, R. M.; McKinney, D. L.; Sigmund, W. M. Enhanced nanocatalysts. Mater. Sci. Eng. 2012, 73, 1–13.
  • Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Cheng, H.-M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.
  • Aazamn, E. S. Visible light photo catalytic degradation of thiophene using Ag–TiO2/multi-walled carbon nanotubes nanocomposite. Ceram. Int. 2014, 40, 6705–6711.
  • Yu, Y.; Yu, J. C.; Chan, C.-Y.; Che, Y.-K.; Zhao, J.-C.; Ding, L.; Ge, W.-K.; Wong, P.-K. Enhancement of adsorption and photo catalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl. Catal. B Environ. 2005, 61, 1–11.
  • Kuo, C.-Y. Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J. Hazard. Mater. 2009, 163, 239–244.
  • Lima, A. M. F.; de Castro, V. G.; Borges, R. S.; Silva, G. G. Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros. 2012, 22, 117–124.
  • Yang, Y.; Qiu, S.; Xie, X.; Wanga, X.; Kwok, R.; Li, Y. A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition. Appl. Surf. Sci. 2010, 256, 3286–3292.
  • Jung, S.-Y.; Ha, T.-J.; Park, C.-S.; Seo, W.-S.; Lim, Y. S.; Shin, S.; Cho, H. H.; Park, H.-H. Improvement in the conductivity ratio of ordered mesoporous Ag-TiO2 thin films for thermoelectric materials. Thin Solid Films 2013, 529, 94–97.
  • Wang, T.; Yan, X.; Zhao, S.; Lin, B.; Xue, C.; Yang, G.; Ding, S.; Yang, B.; Ma, C.; Yang, G. A facile one-step synthesis of three-dimensionally ordered macroporous N-doped TiO2 with ethanediamine as the nitrogen source. J. Mater. Chem. A. 2014, 2, 15611–15619.
  • Xue, C.; Yan, X.; Ding, S.; S. Yang, S. Monodisperse Ag–AgBr nanocrystals anchored on one-dimensional TiO2 nanotubes with efficient plasmon-assisted photo catalytic performance. RSC Adv. 2016, 6, 68653–68662.
  • Yan, X.; Xue, C.; Yang, B.; Yang, G. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications. Appl. Surf. Sci. 2017, 394, 248–257.
  • Chaudhary, D.; Singh, S.; Vankar, V. D.; Khare, N. A ternary Ag/TiO2/CNT photoanode for efficient photo electrochemical water splitting under visible light irradiation. Int. J. Hydrogen Energy. 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.