216
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterization and antiurease activities of a novel Mannich base 1-[(4-methoxyphenyl)(2-methylidenecyclohexyl)methyl]pyrrolidine (MMP) and its complexes with Cu (II), Ni (II), Co (II), and Fe (II) ions

, , , , &
Pages 1418-1423 | Received 02 Apr 2016, Accepted 20 Apr 2017, Published online: 17 Oct 2017

References

  • Hieu, B. T.; Thuy, L. T.; Thuy, V. T.; Tien, H. X.; Chinh, L. V.; Hoang, V. D.; Vu, T. K. Design, synthesis and in vitro cytotoxic activity evaluation of new Mannich Bases. Bull. Korean Chem. Soc., 2012, 33, 1586–1592.
  • Arend, M.; Westermann, B.; Risch, N. Modern variants of the Mannich reaction, Angew. Chem. Int. Ed., 1998, 37(8), 1044–1070.
  • Kobayashi, S.; Ueno, M. Comprehensive Asymmetric Catalysis, Supplement; Springer: Berlin, 2004; vol. 1, pp. 143–150.
  • Blicke, F. F. The Mannich Reaction; Organic Reactions; John Wiley & Sons, Hoboken, New Jersey, United States, 1942; pp. 303–341.
  • Ram, F. D. J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem., Int. Ed. 2005, 44(11), 1602–1634.
  • Jayabalakrishnan, C.; Natarajan, K. Synthesis, characterization, and biological activities of Ruthenium (II) carbonyl complexes containing bifunctional tridentate Schiff bases. Synth. React. Inorg. Met. Org. Chem., 2001, 31(6), 983–995.
  • Jeewoth, T.; Wah,  ; Li, K.; Minu, G.; Bhowon, D.; Ghoorohoo,  ; Babooram, K. Synthesis and anti-bacterial/catalytic properties of Schiff bases and Schiff base metal complexes derived from 2,3-diaminopyridine. Synth. React. Inorg. Met.Org. Chem., 2000, 30(6), 1023–1038.
  • List, B. J. The direct catalytic asymmetric three-component Mannich reaction, J. Am. Chem. Soc., 2000, 122(38), 9336–9337.
  • Eftekhari, S. B.; Abdullah, A. M. M.; Zirak, M. Stereoselective synthesis of β-amino ketones via direct Mannich-type reactions, catalyzed with ZrOCl2·8H2O under solvent-free conditions, Eur. J. Org. Chem., 2006, 22, 5152–5157.
  • Tanaka, F.; Barbas, C. F. Direct asymmetric anti-Mannich-type reactions catalyzed by a designed amino acid. J. Am. Chem. Soc., 2006, 128(4), 1040–1041.
  • Al-jeboori, M. J.; Al-jeboori, F. A.; Al-Azzawi, M. A. R. Metal complexes of a new class of polydentate Mannich bases: Synthesis and spectroscopic characterization. Inorganica Chimica Acta, 2011, 379, 163–170.
  • Napitupulu, M.; Rossignoli, M.; Lawrance, G. A. Cyclic polyamines via a Molybdenum (0) template Mannich-type reaction. Transition Metal Chemistry, 2007, 32(6), 816–821.
  • Haidue, L. Metal compounds in cancer chemotherapy. Coord. Chem. Rev., 1990, 99, 253–296.
  • Lopes, F.; Capola, R.; Goncaves, J. O.; Horton,  ; Moreira, R. Amidomethylation of amodiaquine: antimalarial N-Mannich base derivatives. Tetrahedron Lett., 2004, 45, 7663–7666.
  • Ferlin, M. G.; Chiarelotto, G.; Antonucci, F.; Caparrotta, L.; Froldi, G. Mannich bases of 3H-pyrrolo [3]quinoline having vascorelaxing activity. Eur. J. Med. Chem., 2002, 37, 427–434.
  • Holla, B. S.; Veerendra, B.; Shivananda, M. K.; Poojary, B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 2003, 38, 759–767.
  • Maria, M. E.; Sasca, V.; Mosoarca, E. M.; Avram, L.; Tudose, R.; Costisor, O. Thermal behavior of Mannich base N, N′-tetra (4-antipyrylmethyl)-1,2-diaminoethane (TAMEN) and its binuclear complexes. J. Therm. Anal. Cal., 2008, 94(2), 355–360.
  • Yi, L.; Zou, J.; Lei, H.; Liu, X.; Zhang, M. The Mannich reaction of cyclic ketones, aromatic aldehydes and aromatic amines. Org. Prep. Proc. Int., 1991, 23, 673–676.
  • Wu, Y.-S.; Cai, J.; Hu, Z-Y.; Lin, G.-X. A new class of metal-free catalysts for direct diastereo and regioselective Mannich reactions in aqueous media. Tetrahedron Letter, 2004, 45(48), 8949–8952.
  • Akiyama, T.; Matsuda, K.; Fuchibe, K. HCl-Catalyzed stereoselective Mannich reaction in H2O-SDS system. Synlett, 2005, 2, 322–324.
  • Wei, H.-L.; Yan, Z.-Y.; Niu, Y.-N.; Li, F.-Q.; Liang, Y.-M. Facile and efficient synthesis of 1,3-diaryl-5-spirohexahydropyrimidines via a six-molecule, three-component Mannich-type reaction. J. Org. Chem., 2007, 72, 8600–8603.
  • Kulkarni, P.; Totawar, B.; Zubaidha, P. K. An efficient synthesis of β-amino ketone compounds through three-component Mannich reaction catalyzed by calcium chloride. Monatsh Chem., 2012, 143(4), 625–629.
  • Weatherburn, M. W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39, 971–973.
  • Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The protein data bank. Nucleic Acids Res., 2000, 28, 235–242.
  • Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem., 2004, 25, 1605.
  • ACD/ChemSketch, version 12.01. Advanced Chemistry Development Inc.: Toronto, Ontario, Canada, 2013, www.acdlabs.com.
  • Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Modell. 2006, 25, 247–260.
  • Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock 4 and AutoDock Tools 4: Automated docking with selective receptor flexibility. J. Comp. Chem. 2009, 30(16), 2785–2791.
  • Accelrys Software Inc. Discovery Studio Modeling Environment. Release 4.0; San Diego: Accelrys Software Inc., 2013.
  • Geary, W. J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev., 1971, 7, 81–122.
  • Kerridge, D. H. The chemistry of molten acetamide and acetamide complexes. Chem. Soc. Rev., 1988, 17,181–227.
  • Anad, S., Mixed ligand complexes of Fe (III) containing pseudohalides, nitrosyl and some Mannich bases. Transit. Metal. Chem., 2007, 32, 816–821.
  • Sheikh, H. N.; Husoain, A.; Kalsotro, L. Synthesis and characterization of some oxodiperoxo molybdenum (VI) complexes of morpholinomethyl urea and related ligands. Russ. J. Inorg. Chem. 2006, 51, 724–727.
  • Nakamato, K. IR and Raman spectra of inorganic coordination compounds. Part (B). Applications in Coordination, Organometallic and Bioinorganic Chemistry, 5th ed.; J. Willey and Sons: New York, 1997; p. 60.
  • Narang, K. K.; Agarwal, A. Salicylaldehyde salicylhydrazone complexes of some transition metal ions. Inorg. Chem. Acta, 1974, 9, 137–142.
  • Lever, A. B. P.; Mantovani, E. The far-infrared and electronic spectra of some bis-ethylenediamine and related complexes of copper (II) and the relevance of these data to tetragonal distortion and bond strengths. Inorg. Chem., 1971, 10, 817–826.
  • Neves, A. P.; Maia, K. C. B.; Vargas, M. D.; Visentin, L. C. Dinuclear copper (II) complexes of a novel 3-(aminomethyl) naphthoquinone Mannich Bases: Synthesis, structural, magnetic and electrochemical studies, Polyhedron, 2010, 29, 2884–2891.
  • Neves, A. P.; Barbosa, C. C.; Greco, S. J. Novel aminonaphthoquinone Mannich bases derived from Lawsone and their copper(II) complexes, synthesis, characterization and antibacterial activity, J. Braz. Chem. Soc. 2009, 20(4), 712–727.
  • Raman, N.; Ravichandran, S. Effect of substituents on N-(1-piperidinobenzyl) acetamide and N-(1-morpholinobenzyl) acetamide and their antimicrobial activity. Asian J. Chem. 2003, 15(3–4), 1848–1850.
  • Idhayadhulla, A.; Kumar, R. S.; Nasser, J.A. A.; Selvin, J.; Manilal, A. Synthesis of some Mannich base derivatives and their antimicrobial activity study. Arabian J. Chem., 2014, 7, 994–999.
  • Roman, N.; Esthar, S.; Raja, C. T. A new Mannich base and its transition metal (II) complexes. Synthesis, structural characterization and electrochemical study. Ind. Acad. Sci. J. Chem. Sci. 2004, 116, 209–213.
  • Sathya, D.; Senthil, J.; Pria, S. Synthesis, Characterization and in vitro antimicrobial studies of some transition metal complexes with a new Mannich base N-(1-morpholinosalicylyl) acetamide. Int. J. Chem. Tech. Res. 2011, 3, 248–252.
  • Grewal, R. N.; Ariti, H. E.; Smith, J. C.; Christopher, F. Multiple substitution of protons by sodium ions in sodiated oligoglycines. Int. J. Mass Spectrom. 2002, 12066, 1–11.
  • Zaborska, W.; Krajewska, B.; Olech, Z. Heavy metal ions inhibition of jack bean urease: Potential for rapid contaminant probing. J. Enz. Inhib. Med. Chem., 2004, 19(1), 65–69.
  • Krajewska, B. Ureases I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal. B: Enzym., 2009, 59, 9–21.
  • Macegoniuk, K. Inhibitors of bacterial and plants urease. A review. Folia Biol. Oecol., 2013, 9, 9–16.
  • Chen, W.; Li, Y.; Cui, Y.; Zhang, X.; Zhu, H. L.; Zeng, Q. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. Eur. J. Med. Chem., 2010, 45, 4473–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.