177
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Sensitive detection of sulfasalazine at a carbon paste electrode modified with NiO/CNT nanocomposite and ionic liquid in pharmaceutical and biological samples

&
Pages 1441-1448 | Received 14 Mar 2016, Accepted 17 Jul 2017, Published online: 07 Nov 2017

References

  • Pinals, R. S. Sulfasalazine in the rheumatic diseases. Semin. Arthritis. Rheum. 1988, 17, 246–259.
  • Michel, F.; Navellou, J. C.; Ferraud, D.; Toussirot, E.; Wendling, D. DRESS syndrome in a patient on sulfasalazine for rheumatoid arthritis. Joint. Bone. Spine. 2005, 72, 82–85.
  • Refata, M. S.; Mohamed, S. F. Spectroscopic, thermal and antitumor investigations of sulfasalazine drug in situ complexation with alkaline earth metal ions. Spectrochim. Acta Part A 2011, 82, 108–117.
  • Amos, R. S.; Pullar, T.; Bax, D. E.; Situnayake, D.; Capell, H. A.; Mconkey, B. Sulfasalazine for rheumatic arthritis: Toxicity in 774 patients monitored for one to 11 years. Br. Med. J. 1986, 293, 420–424.
  • Navarro, N. P.; Iglesias, E. G.; Maquieira, A.; Puchades, R. Immunochemical method for sulfasalazine determination in human plasma. Anal. Chim. Acta 2007, 583, 377–383.
  • Gu, G. Z.; Xia, H. M.; Pang, Z. Q.; Liu, Z. Y.; Jiang, X. G.; Chen, J. Determination sulphasalazine and its main metabolite sulphapyridine and 5-aminosalicylic acid human plasma by liquid chromatography/tandem mass spectrometry and application to a pharmacokinetic study. J. Chromatogr. B 2011, 879, 449–456.
  • Sadeghi, S.; Garmroodi, A. Sensitive detection of sulfasalazine at screen printed carbon electrode modified with functionalized multiwalled carbon nanotubes. J. Electroanal. Chem. 2014, 727, 171–178.
  • Balakrishnan, V. K.; Terry, K. A.; Toito, J. Determination of sulfonamide antibiotics in wastewater: A comparison of solid phase microextraction and solid phase extraction methods. J. Chromatogr. A 2006, 1131, 1–10.
  • Jacobsson, S. P.; Carlsson, M.; Jonsson, U.; Nilsson, G. Quantitative determination of sulfasalazine by near-infrared spectroscopy and multivariate analysis in reflectance mode with a fibre-optic probe. J. Pharm. Biomed. Anal. 1995, 13, 415–417.
  • Sadeghi, S.; Motaharian, A.; Zeraatkar Moghaddam, A. Electroanalytical determination of sulfasalazine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens. Actuators B 2012, 168, 336–344.
  • Nigovic, B.; Hocevar, S. B. Antimony film electrode for direct cathodic measurement of sulfasalazine. Electrochim. Acta 2011, 58, 523–527.
  • Gupta, V. K.; Jain, R.; Radhapyari, K.; Jadon, N.; Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals – a review. Anal. Biochem. 2011, 408, 179–196.
  • Mahmoudi Moghaddam, H.; Beitollahi, H.; Tajik, S.; Soltani, H. Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid. Electroanalysis 2015, 27, 2620–2628.
  • Dhanalakshmi, C. P.; Vijayalakshmi, L.; Narayanan, V. Electrochemical studies of hydroxyapatitie-poly ethylene glycol nanocomposite. Synth. React. Inorg. Met. Org. Chem. 2014, 44, 329–335.
  • Beitollahi, H.; Nekooei, S. Application of a Modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis 2016, 28, 645–653.
  • Jagtap, N. R.; Shelke, V. A.; Nimase, M. S.; Jadhav, S. M.; Shankarwar, S. G.; Chondhekar, T. K. Electrochemical synthesis of tetra alkyl ammonium salt stabilized gold nanoparticles. Synth. React. Inorg. Met. Org. Chem. 2012, 42, 1369–1374.
  • Beitollahi, H.; Gholami, A.; Ganjali, M.R. Preparation, characterization and electrochemical application of Ag–ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. Mater. Sci. Eng. C 2015, 57, 107–112.
  • Behpour, M.; Masoum, S.; Meshki, M. Application of electrochemical techniques at a nanostructure-based modified sensor for analyte quantitation. Synth. React. Inorg. Met. Org. Chem. 2016, 46, 1026–1032.
  • Beitollahi, H.; Ghofrani Ivari, S.; Torkzadeh-Mahani, M. Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO–CuO nanoplates and modifier. Mater. Sci. Eng. C 2016, 69, 128–133.
  • Kotoucek, M.; Skopalova, J.; Michalkova, D. Electroanalytical study of salazosulfapyridine and components at the mercury electrode. Anal. Chim. Acta 1997, 353, 61–69.
  • Eriksson, A.; Nyholm, L. Coulometric and spectroscopic investigations of the oxidation and reduction of some azosalicylic acids at glassy carbon electrodes. Electrochim. Acta 2011, 496, 1113–1129.
  • Nigovic, B.; Hocevar, S. B. Antimony film electrode for direct cathodic measurement of sulfasalazine. Electrochim. Acta 2011, 58, 523–527.
  • Nigovic, B.; Simunic, B.; Hocevar, S. Voltammetric measurements of aminosalicylate drugs using bismuth film electrode. Electrochim. Acta 2009, 54, 5678–5683.
  • Sadeghi, S.; Motaharian, A.; Zeraatkar Moghaddam, A. Electroanalytical determination of sulfasalazine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens. Actuators B 2012, 168, 336–344.
  • Esfandiari Baghbamidi, S.; Beitollahi, H.; Tajik, S.; Hosseinzadeh, R. Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H- [1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int. J. Electrochem. Sci. 2016, 11, 10874–10883.
  • Beitollahi, H.; Ebadinejad, F.; Shojaie, F.; Torkzadeh-Mahani, M. A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide. Anal. Methods 2016, 8, 6185–6193.
  • Beitollahi, H.; Tajik, S.; Jahani, S. H. Electrocatalytic Determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite. Electroanalysis 2016, 28, 1093–1099.
  • Beitollahi, H.; Karimi-Maleh, H.; Khabazzadeh, H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem. 2008, 80, 9848–9851.
  • Silvester, D. S. Recent advances in the use of ionic liquids for electrochemical sensing. Analyst 2011, 136, 4871–4882.
  • Yang, X.; Kirch, J.; Olsen, E. V.; Fergus, J. W.; Simonian, A. L. Anti-fouling PEDOT:PSS modification on glassy carbon electrodes for continuous monitoring of tricresyl phosphate. Sens. Actuators B 2013, 177, 659–667.
  • Kalimuthu, P.; John, S. A. Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 2010, 80, 1686–1691.
  • Liang, W.; Yi, W.; Li, Y.; Zhang, Z.; Yang, M.; Hu, C.; Chen, A. A novel magnetic Fe3O4@gold composite nanomaterial: Synthesis and application in regeneration-free immunosensor. Mater. Lett. 2010, 64, 2616–2619.
  • Omidinia, E.; Shadjou, N.; Hasanzadeh, M. (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Mater. Sci. Eng. C 2013, 33, 4624–4632.
  • Abu Shawish, H. M.; Abed Almonem, K. I.; Saadeh, S. M.; Al-lham, W. S. Determination of haloperidol drug in ampoules and in urine samples using a potentiometric modified carbon paste electrode. Measurement 2016, 78, 180–186.
  • Macounova, K.; Jirkovsk, J.; Makarova, M. V.; Franc, J.; Krtil, P. Oxygen evolution on Ru1-xNixO2-y nanocrystalline electrodes. J. Solid State Electrochem. 2009, 13, 959–65.
  • Molaakbari, E.; Mostafavi, A.; Beitollahi, H.; Alizadeh, R. Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa. Analyst 2014, 139, 4356–4364.
  • Jiang, L.; Gu, S. Q.; Ding, Y. P.; Jiang, F.; Zhang, Z. Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale 2013, 6, 207–214.
  • Ye, D. X.; Luo, L. Q.; Ding, Y. P.; Liu, B. D.; Liu, X. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst 2012, 137, 2840–2845.
  • Cao, X.; Xu, Y. J.; Wang, N. Facile synthesis of NiO nanoflowers and their electrocatalytic performance. Sens. Actuat. B 2011, 153, 434–438.
  • Yang, J.; Jiang, L. C.; Zhang, W. D.; Gunasekaran, S. A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 2010, 82, 25–33.
  • Yang, L.; Wangn, G.; Liu, Y.; Wang, M. Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Talanta 2013, 113, 135–141.
  • Xiang, L.; Deng, X. Y.; Jin, Y. Experimental study on synthesis of NiO nanoparticles. Script. Mater. 2002, 47, 219–224.
  • Kim, S. G.; Yoon, S. P.; Han, J.; Nam, S. W.; Lim, T. H.; Oh, I. H.; Hong, S. A. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells. Electrochim. Acta 2004, 49, 3081–3089.
  • Dong, S.; Zhang, P.; Liu, H.; Li, N.; Huang, T. Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies. Biosens. Bioelectron. 2011, 26, 4082–4087.
  • Salimi, A.; Sharifi, E.; Noorbakhsh, A.; Soltanian, S. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 2007, 22, 3146–3153.
  • Gupta, V. K.; Jain, A. K., Maheshwari, G.; Lang, H. Copper (II)-selective potentiometric sensor based on Porphyrins in PVC matrix. Sens. Actuat. B 2006, 117, 99–106.
  • Santana, E. R.; de Lima, C. A.; Piovesan, J. V.; Spinelli, A. An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sens. Actuators B 2017, 240, 487–496.
  • Gupta, V. K.; Singh, A. K.; Mehtab, S.; Gupta, B. A. A Cobalt (II) selective PVC membrane based on a Schiff base complex of N, N-bis (salicylidene)-3,4-diaminotoluene. Anal. Chim. Acta 2006, 566, 5–10.
  • Jiokeng, S.L.Z.; Dongmo, L. M.; Ymele, E.; Ngameni, E.; Tonle, I. K. Sensitive stripping voltammetry detection of Pb(II) at a glassy carbon electrode modified with an amino-functionalized attapulgite. Sens. Actuat. B 2017, 242, 1027–1034.
  • Gupta, V. K.; Jain, A. K.; Kumar, P. PVC-based membranes of N,N’-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens. Actuat. B 2006, 120, 259–265.
  • Movlaee, K.; Ganjali, M. R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci. 2017, 12, 305–315.
  • V. K. Gupta; Jain, A. K.; Agarwal, P. K. S.; Maheshwari, G. Chromium (III)-selective sensor based on tri-o-thymotide in PVC matrix. Sens. Actuat. B 2006, 113, 182–186.
  • Manasa, G.; Mascarenhas, R. J.; Satpati, A. K.; D'Souza, O. J.; Dhason, A. Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Mater. Sci. Eng. C 2017, 73, 552–561.
  • Jain, A. K.; Gupta, V. K.; Radi, S.; Singh, L. P.; Raisoni, J. R. A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim. Acta 2006, 51, 2547–2553.
  • Goyal, R. N.; Gupta, V. K.; Bachheti, N. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone. Anal. Chim. Acta 2007, 597, 82–89.
  • Zou, X.; Shang, F.; Wang, S. Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction. Spectrochim. Acta A 2017, 173, 843–848.
  • Gupta, V. K.; Gupta, V. K.; Al Khayat, M.; Gupta, B. Neutral carriers based polymeric membrane electrodes for selective determination of Mercury (II). Anal. Chim. Acta 2007, 590, 81–90.
  • Motaghi, M. M.; Beitollahi, H.; Tajik, S.; Hosseinzadeh, R. Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis. Int. J. Electrochem. Sci. 2016, 11, 7849–7860.
  • Gupta, V. K.; Jain, S.; Chandra, S. Chemical sensor for lanthanum (III) determination using aza crown as ionophore in poly (vinyl chloride) matrix. Anal. Chim. Acta 2003, 486, 199–207.
  • Kumar, M.; Kumara Swamy, B. E.; Mohammed Asif, M. H.; Viswanath, C. C. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine. Appl. Surf. Sci. 2017, 399, 411–419.
  • Gupta, V. K.; Chandra, S.; Mangla, R. Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim. Acta 2002, 47, 1579–1586.
  • Ozcan, A.; İlkbas, S.; Ozcan, A. A. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta 2017, 165, 489–495.
  • Gupta, V. K.; Mangla, R.; Khurana, U.; Kumar, P. Determination of uranyl ions using poly (vinyl chloride) based 4-tert-butylcalix [6]arene membrane sensor. Electroanalysis 1999, 11, 573–576.
  • Velmurugan, M.; Thirumalraj, B.; Chen, S. M.; Al-Hemaid, F.M.A.; Ajmal Ali, M.; Elshikh, M. S. Development of electrochemical sensor for the determination of palladium ions (Pd2+) using flexible screen printed unmodified carbon electrode. J. Colloid Interface Sci. 2017, 485, 123–128.
  • Gupta, V. K.; Jain, S.; Khurana, U. A PVC based pentathia-15-crown-5 membrane potentiometric sensor for mercury (II). Electroanalysis 1997, 9, 478–480.
  • Beitollahi, H.; Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene. J. Electrochem. Soc. 2016, 163, H1157–H1164.
  • Jain, A. K.; Gupta, V. K.; Singh, L. P.; Khurana, U. Macrocycle based membrane sensors for the determ ination of cobalt (II) ions. Analyst 1997, 122, 583–586.
  • Gupta, V. K.; Prasad, R.; Mangla, R.; Kumar, P. New nickel (II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly (vinyl chloride) matrix. Anal. Chim. Acta 2000, 420, 19–27.
  • Sebarchievici, I.; Taranu, B. O.; Birdeanu, M.; Rus, S. F.; Fagadar-Cosma, E. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle-surface modified glassy carbon electrodes. Appl. Surf. Sci. 2016, 390, 131–140.
  • Prasad, R.; Gupta, V. K.; Kumar, A. Metallo-tetraazaporphyrin based anion sensors: Regulation of sensor characteristics through central metal ion coordination. Anal. Chim. Acta 2004, 508, 61–70.
  • Gupta, V. K.; Agarwal, S.; Singhal, B. A review on the recent advances on potentimetric membrane sensors for pharmaceutical analysis. Comb. Chem. High Throughput Screen. 2011, 14, 284–302.
  • Al-Zahrani, E.; Soomro, M. T.; Bashami, R. M.; Ur Rehman, A.; Danish, E.; Ismail, I.M.I.; Aslam, M.; Hameed, A. Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. J. Environ. Chem. Eng. 2016, 4, 4330–4341.
  • Gupta, V. K.; Pathania, D.; Agarwal, S.; Sharma, S. Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent. J. Mol. Liq. 2012, 174, 86–94.
  • Gupta, V. K.; Sethi, B.; Sharma, R. A.; Agarwal, S.; Bharti, A. Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]arene as a cationic receptor. J. Mol. Liq. 2013, 177, 114–118.
  • Wu, P.; Deng, D.; Zhang, H.; Cai, C. Electrochemical detection of trinitrotoluene in water samples based on a natural mineral attapulgite modified electrode. J. Electroanal. Chem. 2016, 781, 238–244.
  • Jain, R.; Gupta, V. K.; Jadon, N.; Radhapyari, K. Voltammetric Determination of cefixime in pharmaceuticals and biological fluids. Anal. Biochem. 2010, 407, 79–88.
  • Gupta, V. K.; Jain, A. K.; Maheshwari, G. Novel Aluminum (III) selective potentiometric sensor based on morin in poly (vinyl chloride) matrix. Talanta 2007, 72, 1469–1473.
  • Kuralay, F.; Tunc, S.; Bozduman, F.; Oksuz, L.; Oksuz, A. U. Biosensing applications of titanium dioxide coated graphene modified disposable electrodes. Talanta 2016, 160, 325–331.
  • Gupta, V. K.; Ganjali, M. R.; Norouzi, P.; Khani, H.; Nayak, A.; Agarwal, S. Electrochemical analysis of some toxic metals and drugs by ion selective electrodes. Crit. Rev. Anal. Chem. 2011, 41, 282–313.
  • Gupta, V. K.; Jain, A. K.; Agarwal, S.; Maheshwari, G. An iron (III) ion selective sensor based on a μ bis (tridentate) ligand. Talanta 2007, 71, 1964–1968.
  • Liu, J.; Zhu, G.; Chen, M.; Ma, X.; Yang, J. Fabrication of electrospun ZnO nanofiber-modified electrode for the determination of trace Cd(II). Sens. Actuat. B 2016, 234, 84–91.
  • Goyal, R. N.; Gupta, V. K.; Chatterjee, S. Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sens. Actuat. B 2010, 149, 252–258.
  • Gupta, V. K.; Mittal, A.; Malviya, A.; Mittal, J. Adsorption of carmoisine a from wastewater using waste materials – bottom ash and de-oiled soya. J. Colloid Interface Sci. 2009, 355, 24–33.
  • Fu, J.; Tan, X. H.; Li, Y. H.; Song, X. J. A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion. Chin. Chem. Lett. 2016, 27, 1541–1546.
  • Jain, A. K.; Gupta, V. K.; Khurana, U.; Singh, L. P. A new membrane Sensor for UO2+, based on 2-hydroxyacetophenoneoxime-thioureatrioxane resin. Electroanalysis 1997, 9, 857–860.
  • Srivastava, S. K.; Gupta, V. K.; Jain, S. Determination of lead using poly (vinyl chloride) based crown ether membrane. Analyst 1995, 120, 495–498.
  • Jahani, S. H.; Beitollahi, H. Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes. Electroanalysis 2016, 28, 2022–2028.
  • Jain, A. K.; Gupta, V. K.; Sahoo, B. B.; Singh, L. P. Copper (II)-selective electrodes based on macrocyclic compounds. Anal. Proc. Incl. Anal. Commun. 1995, 32, 99–101.
  • Khani, H.; Rofouei, M. K.; Arab, P.; upta, V. K.; Vafaei, Z. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion (II). J. Hazard. Mater. 2010, 183, 402–409.
  • Li, T.; Xu, J.; Zhao, L.; Shen, S.; Yuan, Y.; Liu, W.; Tu, Q.; Yu, R.; Wang, J. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta 2016, 159, 356–364.
  • Gupta, V. K.; Karimi-Maleh, H.; Roya Sadegh, R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. J. Electrochem. Sci. 2015, 10, 303–316.
  • Gupta, V. K.; Goyal, R. N.; Sharma, R. A. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone based receptors: Poly (vinyl chloride) based sensor for acetate. Talanta 2008, 76, 859–864.
  • Gupta, V. K.; Mergu, N.; Kumawat, L. K.; Singh, A. K. Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe. Sens. Actuat. B 2015, 207, 216–223.
  • Yigit, A.; Yardım, Y.; Celebi, M.; Levent, A.; Senturk, Z. Graphene/nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. Talanta 2016, 158, 21–29.
  • Gupta, V. K.; Mergu, N.; Kumawat, L. K.; Singh, A. K. A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta 2015, 144, 80–89.
  • Gupta, V. K.; Singh, A. K.; Kumawat, L. K. Thiazole schiff base turn-on fluorescent chemosensor for Al3+ ion. Sens. Actuat. B 2014, 195, 98–108.
  • Beitollahi, H.; Garkani Nejad, F. Graphene Oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis 2016, 28, 2237–2244.
  • Srivastava, S. K.; Gupta, V. K.; Jain, S. PVC-based 2, 2, 2-cryptand sensors for zinc ions. Anal. Chem. 1996, 68, 1272–1275.
  • Sanati, A. L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A. A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C 2014, 35, 379–385.
  • Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications; 2nd ed. Wiley: New York, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.