201
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Self-assembly of dandelion-like NiCo2O4 hierarchical microspheres for non-enzymatic glucose sensor

, , , , &
Pages 1560-1567 | Received 06 Dec 2016, Accepted 17 Jul 2017, Published online: 15 Nov 2017

References

  • Wang, J. Electrochemical glucose biosensors. Che. Rev. 2008, 108, 814–825. https://doi.org/10.1021/cr068123a
  • Wang, T.; Su, K.; Li, H.; Wang, Q.; Hu, N.; Wang, P. Recent achievements in cellular behavior investigation using cell-based impedance biosensors. Sensor Letters, 2015, 13, 1–12. https://doi.org/10.1166/sl.2015.3401
  • Yoo, E.-H.; Lee, S.-Y. Glucose biosensors: An overview of use in clinical practice, Sensors, 2010, 10, 4558–4576. https://doi.org/10.3390/s100504558
  • Mello, L. D.; Kubota, L. T. Review of the use of biosensors as analytical tools in the food and drink industries, Food Chemistry, 2002, 77, 237–256. https://doi.org/10.1016/S0308-8146(02)00104-8
  • Clark, L. C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery, Ann. New York Acad. Sci. 1962, 102, 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
  • Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent advances in electrochemical glucose biosensors: A review. Rsc Advances, 2013, 3, 4473–4491. https://doi.org/10.1039/c2ra22351a
  • Ahmad, N. M.; Abdullah, J.; Ramli, N. I.; Rahman, S. A.; Azmi, N. E.; Ariffin, N. An approach of zirconium oxide/polyethylene glycol nanocomposite film on screen printed carbon electrode and its application in glucose determination. Sensor Letters, 2014, 12, 1590–1596( 1597). https://doi.org/10.1166/sl.2014.3381
  • Tarlani, A.; Fallah, M.; Lotfi, B.; Khazraei, A.; Golsanamlou, S.; Muzart, J.; Mirza-Aghayan, M. New ZnO nanostructures as non-enzymatic glucose biosensors. Bios. Bioelectron. 2015, 67, 601–607. https://doi.org/10.1016/j.bios.2014.09.063
  • Wang, C.-H.; Lee, S.-W.; Tseng, C.-J.; Wu, J.-W.; Hung, I.-M.; Tseng, C.-M.; Chang, J.-K. Nanocrystalline Pd/carbon nanotube composites synthesized using supercritical fluid for superior glucose sensing performance. J. Alloys and Compounds, 2014, 615, S496–S500. https://doi.org/10.1016/j.jallcom.2013.12.187
  • Sun, K. G.; Hur, S. H. Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sens. Act. B: Chemical, 2015, 210, 618–623. https://doi.org/10.1016/j.snb.2015.01.020
  • Fu, S.; Fan, G.; Yang, L.; Li, F. Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite. Electrochim. Acta. 2015, 152, 146–154. https://doi.org/10.1016/j.electacta.2014.11.115
  • Shen, C.; Su, J.; Li, X.; Luo, J.; Yang, M. Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose. Sens. Act. B: Chemical, 2015, 209, 695–700. https://doi.org/10.1016/j.snb.2014.12.044
  • Sang, H. K.; Umar, A.; Hwang, S. W. Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application. Ceramics International, 2015, 41, 9468–9475. https://doi.org/10.1016/j.ceramint.2015.04.003
  • Sahu, V.; Grover, S.; Sharma, M.; Pandey, A.; Singh, G.; Sharma, R. K. CuO/Reduced graphene oxide nanocomposite for high performance non-enzymatic, cost effective glucose sensor. Sensor Letters, 2016, 14, 1117–1122( 1116). https://doi.org/10.1166/sl.2016.3727
  • De, S.; Mohanty, S.; Nayak, S. K. Nanostructured cerium oxide reinforced green composites for enzymatic glucose biosensor. Sensor Letters, 2015, 13, 209–218 (210). https://doi.org/10.1166/sl.2015.3419
  • Ahmad, R.; Tripathy, N.; Hahn, Y. B.; Umar, A.; Ibrahim, A. A.; Kim, S. H. A robust enzymeless glucose sensor based on CuO nanoseed modified electrodes. Dalton Trans. 2015, 44, 12488–12492. https://doi.org/10.1039/C5DT01664A
  • Cui, Z.; Yin, H.; Nie, Q. Controllable preparation of hierarchically core–shell structure NiO/C microspheres for non-enzymatic glucose sensor. Journal of Alloys and Compounds, 2015, 632, 402–407. https://doi.org/10.1016/j.jallcom.2015.01.213
  • Mahmoudian, M. R.; Basirun, W. J.; Woi, P. M.; Sookhakian, M.; Yousefi, R.; Ghadimi, H.; Alias, Y. Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection. Mater. Sci. Eng.: C, 2016, 59, 500–508. https://doi.org/10.1016/j.msec.2015.10.055
  • Li, M.; Han, C.; Zhang, Y.; Bo, X.; Guo, L. Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors. Analytica chimica acta. 2015, 861, 25–35.
  • Yuan, C.; Wu, H. B.; Xie, Y.; Lou, X. W.. Mixed transition-metal Oxides: Design, synthesis, and energy-related applications. Angewandte Chemie International Edition, 2014, 53, 1488–1504. https://doi.org/10.1002/anie.201303971
  • Yan, T.; Li, R.; Li, Z.; Fang, Y. A facile and scalable strategy for synthesis of size-tunable NiCo2O4 with nanocoral-like architecture for high-performance. Electrochimica Acta. 2014, 134, 384–392. https://doi.org/10.1016/j.electacta.2014.03.168
  • Su, Y-z.; Xu, Q-z.; Zhong, Q-s.; Shi, S-t.; Zhang, C-j.; Xu, C-w. NiCo2O4/C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter. J. Alloy Comp. 2014, 617, 115–119. https://doi.org/10.1016/j.jallcom.2014.07.195
  • Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G. R.. Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater. Chem Phys. 2015, 165, 235–244. https://doi.org/10.1016/j.matchemphys.2015.09.023
  • Rounaghi, G. H.; Razavipanah, I.; Vakili-Zarch, M. H.; Ghanei-Motlagh, M.; Salavati, M. R. Electrochemical synthesis of Alizarin Red S doped polypyrrole and its applications in designing a novel silver (I) potentiometric and voltammetric sensor. J. Mol. Liquids, 2015, 211, 210–216. https://doi.org/10.1016/j.molliq.2015.06.066
  • Pu, J.; Wang, J.; Jin, X.; Cui, F.; Sheng, E.; Wang, Z. Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors. Electrochimica Acta. 2013, 106, 226–234. https://doi.org/10.1016/j.electacta.2013.05.092
  • Hao, G.; Wang, W.; Gao, G.; Zhao, Q.; Li, J. Preparation of nanostructured mesoporous NiCo2O4 and its electrocatalytic activities for water oxidation. J. Energy Chem. 2015, 24, 271–277. https://doi.org/10.1016/S2095-4956(15)60311-4
  • Chen, R.; Wang, H.-Y.; Miao, J.; Yang, H.; Liu, B. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy, 2015, 11, 333–340. https://doi.org/10.1016/j.nanoen.2014.11.021
  • Ding, R.; Qi, L.; Jia, M.; Wang, H. Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4 nanomaterials for high-performance electrochemical capacitors. J. Appl. Electrochem. 2013, 43, 903–910. https://doi.org/10.1007/s10800-013-0580-z
  • Ding, R.; Qi, L.; Jia, M.; Wang, H. Porous NiCo2O4 nanostructures as bi-functional electrocatalysts for CH3OH oxidation reaction and H2 O2 reduction reaction. Electrochimica Acta, 2013, 113, 290–301. https://doi.org/10.1016/j.electacta.2013.09.053
  • Tang, X.; Zhang, B.; Xiao, C.; Zhou, H.; Wang, X.; He, D. Carbon nanotube template synthesis of hierarchical NiCoO2 composite for non-enzyme glucose detection. Sensors and Actuators B: Chemical, 2016, 222, 232–239. https://doi.org/10.1016/j.snb.2015.08.077
  • Yang, J.; Cho, M.; Lee, Y. Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance. Sensors and Actuators B: Chemical, 2016, 222, 674–681. https://doi.org/10.1016/j.snb.2015.08.119
  • Sun, Y.; Buck, H.; Mallouk, T. E. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal. chem. 2001, 73, 1599–1604. https://doi.org/10.1021/ac0015117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.