1,483
Views
57
CrossRef citations to date
0
Altmetric
Original Articles

The synthesis and characterisation of highly stable and reproducible selenium nanoparticles

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1568-1576 | Received 15 Dec 2016, Accepted 16 Jul 2017, Published online: 28 Nov 2017

References

  • Zhang, S.-Y., et al., Synthesis of selenium nanoparticles in the presence of polysaccharides. Materials Letters. 2004, 58(21), 2590–2594. https://doi.org/10.1016/j.matlet.2004.03.031
  • Bolt, H. M.; Marchan, R.; Hengstler, J. G. Selenium: an element with two faces. Arch Toxicol. 2011, 85(12), 1493–4. https://doi.org/10.1007/s00204-011-0783-1
  • Burk, R. F. H.; Motley, K. E., A. K. Selenoprotein Metabolism and Function: Evidence for More than One Function for Selenoprotein P1,2. Journal of Nutrition. 2003. 133(5), 1517S–1520S.
  • Jiao, Q., et al., Immunomodulation of nanoparticles in nanomedicine applications. BioMed research international. 2014, 2014, 1–19. https://doi.org/10.1155/2014/426028.
  • Iravani, S., et al., Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences. 2014, 9(6), 385.
  • Förster, H.; Wolfrum, C.; Peukert, W. Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. Journal of Nanoparticle Research. 2012, 14(7), 1–16. https://doi.org/10.1007/s11051-012-0926-1
  • Amendola, V. and Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Physical chemistry chemical physics. 2009, 11(20), 3805–3821. https://doi.org/10.1039/b900654k
  • Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chemistry. 2011, 13(10), 2638–2650. https://doi.org/10.1039/c1gc15386b
  • Ahmad, A., et al., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces. 2003, 28(4), 313–318. https://doi.org/10.1016/S0927-7765(02)00174-1
  • Singaravelu, G., et al., A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces. 2007, 57(1), 97–101. https://doi.org/10.1016/j.colsurfb.2007.01.010
  • Kalimuthu, K., et al., Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces. 2008, 65(1), 150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018
  • Zhang, W.; Qiao, X.; Chen, J. Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007, 299(1), 22–28. https://doi.org/10.1016/j.colsurfa.2006.11.012
  • Shchukin, D. G.; Radtchenko, I. L.; Sukhorukov, G. B. Photoinduced reduction of silver inside microscale polyelectrolyte capsules. Chem Phys Chem. 2003, 4(10), 1101–1103. https://doi.org/10.1002/cphc.200300740
  • Huang, H. and Yang, Y. Preparation of silver nanoparticles in inorganic clay suspensions. Composites Science and Technology. 2008, 68(14), 2948–2953. https://doi.org/10.1016/j.compscitech.2007.10.003
  • Johans, C., et al., Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid–liquid interface. Electrochemistry communications. 2002, 4(3), 227–230. https://doi.org/10.1016/S1388-2481(02)00256-4
  • Abid, J.-P., et al., Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chemical Communications. 2002, 7(7), 792–793. https://doi.org/10.1039/b200272h.
  • Chen, J., et al., Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Materials chemistry and physics. 2008, 108(2), 421–424. https://doi.org/10.1016/j.matchemphys.2007.10.019
  • Raveendran, P.; Fu, J.; Wallen, S. L. Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society. 2003, 125(46), 13940–13941. https://doi.org/10.1021/ja029267j
  • Panáček, A., et al., Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B. 2006, 110(33), 16248–16253. https://doi.org/10.1021/jp063826h
  • Kim, D.; Jeong, S.; Moon, J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 2006. 17(16), 4019–4024. https://doi.org/10.1088/0957-4484/17/16/004
  • Dang, T. M. D., et al., Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2011, 2(1), 015009.
  • Chapman, J.; Weir, E.; Regan, F. Period four metal nanoparticles on the inhibition of biofouling. Colloids and Surfaces B: Biointerfaces. 2010, 78(2), 208–216. https://doi.org/10.1016/j.colsurfb.2010.03.002
  • Kumar, S.; Gandhi, K.; Kumar, R. Modeling of formation of gold nanoparticles by citrate method. Industrial & Engineering Chemistry Research. 2007, 46(10), 3128–3136. https://doi.org/10.1021/ie060672j
  • Chapman, J.; Regan, F.; Sullivan, T., Nanoparticles in anti-microbial materials: Use and characterisation. Royal Society of London, London, UK, 2012.
  • Xiong, Y. and Xia, Y. Shape‐controlled synthesis of metal nanostructures: the case of palladium. Advanced Materials. 2007, 19(20), 3385–3391. https://doi.org/10.1002/adma.200701301
  • Khanna, P., et al., Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature. Journal of Nanoparticle Research. 2009, 11(4), 793–799. https://doi.org/10.1007/s11051-008-9441-9
  • Tao, A. R.; Habas, S.; Yang, P. Shape control of colloidal metal nanocrystals. Small. 2008, 4(3), 310–325. https://doi.org/10.1002/smll.200701295
  • Pong, B.-K., et al., New insights on the nanoparticle growth mechanism in the citrate reduction of gold (III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. The Journal of Physical Chemistry C. 2007, 111(17), 6281–6287. https://doi.org/10.1021/jp068666o
  • Amany, A.; El-Rab, S. F. G.; Gad, F. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharma Chemica. 2012, 4(1), 53–65.
  • Janardhanan, R., et al., Synthesis and surface chemistry of nano silver particles. Polyhedron. 2009, 28(12), 2522–2530. https://doi.org/10.1016/j.poly.2009.05.038
  • An, J., et al., Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Science and Technology. 2008, 41(6), 1100–1107. https://doi.org/10.1016/j.lwt.2007.06.019
  • Šileikaitė, A., et al., Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Materials Science (Medžiagotyra). 2009, 15(1), 21–27.
  • Wiley, B., et al., Shape‐controlled synthesis of metal nanostructures: the case of silver. Chemistry–A European Journal. 2005, 11(2), 454–463. https://doi.org/10.1002/chem.200400927
  • Sharma, G., et al., Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules. 2014, 19(3), 2761–2770. https://doi.org/10.3390/molecules19032761
  • Zhang, J., et al., A new method for the synthesis of selenium nanoparticles and the application to construction of H2O2 biosensor. Chinese Chemical Letters. 2004, 15(11), 1345–1348.
  • Khoei, N. S., et al., Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. New Biotechnology. 2017, 34, 1–11. https://doi.org/10.1016/j.nbt.2016.10.002
  • Sun, J., et al., Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility. Materials Science and Engineering: C. 2017, 73, 596–602. https://doi.org/10.1016/j.msec.2016.12.106
  • Sun, K., et al., Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. Journal Of Materials Science. 2009, 44(3), 754–758. https://doi.org/10.1007/s10853-008-3162-4
  • Henglein, A. and Giersig, M. Formation of colloidal silver nanoparticles: capping action of citrate. The Journal of Physical Chemistry B. 1999, 103(44), 9533–9539. https://doi.org/10.1021/jp9925334
  • Fritz, G., et al., Electrosteric stabilization of colloidal dispersions. Langmuir. 2002, 18(16), 6381–6390. https://doi.org/10.1021/la015734j
  • El-Nour, K. M. A., et al., Synthesis and applications of silver nanoparticles. Arabian Journal Of Chemistry. 2010, 3(3), 135–140. https://doi.org/10.1016/j.arabjc.2010.04.008
  • Rivero, P. J., et al., Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Research Letters. 2013, 8(1), 1. https://doi.org/10.1186/1556-276X-8-101
  • Chapman, J. and Regan, F. Sebacic and succinic acid derived plasticized PVC for the inhibition of biofouling in its initial stages. Journal of Applied Biomaterials & Biomechanics. 2011, 9(3), 176–184.
  • Bai, J., et al., One-pot synthesis of polyacrylamide-gold nanocomposite. Materials Chemistry and Physics. 2007, 106(2), 412–415. https://doi.org/10.1016/j.matchemphys.2007.06.021
  • Maye, M. M., et al., Heating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulations. Langmuir. 2000, 16(2), 490–497. https://doi.org/10.1021/la990892k
  • Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chemical Communications. 2003, (8), 927–934. https://doi.org/10.1039/b207789b.
  • Meulenkamp, E. A. Synthesis and growth of ZnO nanoparticles. The Journal of Physical Chemistry B. 1998, 102(29), 5566–5572. https://doi.org/10.1021/jp980730h
  • Mayers, B. T., et al., Sonochemical synthesis of trigonal selenium nanowires. Chemistry of Materials. 2003, 15(20), 3852–3858. https://doi.org/10.1021/cm034193b
  • Zhang, Y.; Wang, J.; Zhang, L. Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir. 2010, 26(22), 17617–17623. https://doi.org/10.1021/la1033959
  • Fesharaki, P. J., et al., Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian Journal of Microbiology. 2010, 41(2), 461–466. https://doi.org/10.1590/S1517-83822010000200028
  • Ingole, A. R., et al., Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Lett. 2010, 7(7), 485–489.
  • Ramamurthy, C., et al., Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering. 2013, 36(8), 1131–1139. https://doi.org/10.1007/s00449-012-0867-1
  • Balasubramanian, S. K., et al., Characterization, purification, and stability of gold nanoparticles. Biomaterials. 2010, 31(34), 9023–9030. https://doi.org/10.1016/j.biomaterials.2010.08.012
  • Ofokansi, K., et al., Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2010, 76(1), 1–9. https://doi.org/10.1016/j.ejpb.2010.04.008
  • Bihari, P., et al., Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Particle and Fibre Toxicology. 2008, 5(1), 1. https://doi.org/10.1186/1743-8977-5-14
  • Haidekker, M., et al., Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorganic Chemistry. 2005, 33(6), 415–425. https://doi.org/10.1016/j.bioorg.2005.07.005
  • Wohlfarth, C., Viscosity of dichloromethane, in Supplement to IV/18. Springer Berlin Heidelberg. 2008; pp. 61–61.
  • Malhotra, S.; Jha, N.; Desai, K. A superficial synthesis of selenium nanospheres using wet chemical approach. Int J Nanotechnol Appl. 2014, 3, 7–14.
  • Anyaogu, K. C.; Fedorov, A. V.; Neckers, D. C. Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir. 2008, 24(8), 4340–4346. https://doi.org/10.1021/la800102f
  • Senthil Kumaran, C. K., et al.,, Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. NANO VISION. 2015, 5(4-6), 161–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.